
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Extending the Power of Snap Rounding Variants

Eli Packer∗

Abstract

Snap Rounding (SR for short) is a method for convert-
ing arbitrary-precision arrangements of line segments
into a fixed-precision representation. In the previ-
ous years two variants of SR were presented: Iterated
Snap Rounding (ISR) and Iterated Snap Rounding with
Bounded Drift (ISRBD). Their goal was to eliminate an
undesirable property that SR possesses. Prior to their
appearances, the capabilities of SR were extended in
two publications. One showed how to support dynamic
rounding (insertion and deletion of line segments). The
other extended SR to IR3 (limited to arrangement of line
segments). In this work we show how to extend ISR and
ISRBD to support these capabilities.

1 Introduction

Snap Rounding (SR for short) is a method for converting
geometric input into finite precision representation in
order to achieve more robustness in the computations
that follow. Most of the concentration of SR has been
devoted to arrangements of line segments in IR2. In the
previous two decades, several publications have dealt
with SR [6, 7, 8, 9, 11, 12].

SR proceeds as follows. The plane is tiled with a
grid of unit squares, pixels, each centered at a point
with integer coordinates. A pixel is hot if it contains
vertices of the arrangement. Then the output of each
line segment is the polygonal chain through the centers
of the hot pixels met by it, in the order along the line
segment. See Figure 1(a-b) for an illustration.

Halperin and Packer [10] observed that a vertex of
the output may be extremely close to a non-incident
edge1, inducing possible robustness problems when han-
dling corresponding queries. They further proposed an
augmented procedure, Iterated Snap Rounding (ISR, for
short), that eliminates this undesirable property. The
main idea is that whenever a link (a segment in a polyg-
onal chain) passes through a hot pixel h, but not ends at
its center, it is further broken and rounded to the center
of h. As a result, all links that penetrate a hot pixel,

∗Department of Computer Science, Stony Brook University,
epacker@cs.sunysb.edu. Work on this paper has been partially
supported by the National Science Foundation (CCF-0431030).

1The distance between a vertex and a non-incident edge can be
made as small as 1/

√

(2b
− 1)2 + 1 ≈ 2−b, where b is the number

of bits in the representation.

(f)

(a) (b) (c)

(d) (e)

Figure 1: Results of SR, ISR and ISRBD. All the
squares in sub figures (b),(c), (d) and (f) are hot pix-
els. The line segment which demonstrates the difference
between the methods is marked in bold. (a) Input (b)
SR output (c) ISR output (d) ISRBD output. The ef-
fect of deleting/inserting a line segment is illustrated in
sub figures (e) and (f). In (e), an input line segment is
deleted. As a result, the output of the bold line segment
changes, both in ISR and ISRBD. The result (same in
ISR and ISRBD) is illustrated in (f). Alternatively, one
can view this process as adding a new line segment if
the original input is as in (e).

necessarily end at its center. Thus, the distance between
any vertex (center of hot pixel) and a non-incident link
is at least half a unit.

ISR, however, may round line segments very far from
their origin2 [14]. This property motivated another vari-
ant, Iterated Snap Rounding with Bounded Drift (IS-
RBD, for short) [15]. Its main idea is to control the
deviation of the input by introducing new hot pixels be-
yond the ones originated by SR. For each input line seg-
ment s, ISRBD finds a list of hot pixels Γ that must be
the ones that cause s to drift beyond a distance thresh-
old, if at some point it does. It was shown that the
centers of these pixels must be located within two thin

2ISR may round the output as far as θ(n2) units, where n is
the input size. Figure 1(c) illustrates such a large deviation.

19th Canadian Conference on Computational Geometry, 2007

stripes, called the forbidden loci. Then, by exploiting
the weakly-monotone property that the output polyg-
onal chains possess, ISRBD heats pixels in such a way
that it is impossible for the hot pixels of Γ to round the
output of s. Figure 1 illustrates the differences between
the three variants.

De Berg et al. [3] showed that degree-2 vertices that
do not correspond to endpoints can be safely removed
from the output while maintaining the nice properties of
SR. Packer [15] adapted a similar routine in ISRBD. In
this routine, vertices that correspond to hot pixels that
actually constrain the deviation of the line segments be-
yond some threshold are not removed. He also showed
that this removal may even be crucial to asymptotically
decrease the complexity of the output.

Some of the papers that were devoted to SR offered
extensions. Guibas and Marimont [9] showed how to
support dynamic rounding (the ability to insert and
delete line segments after the Snap Rounding represen-
tation has been computed). Goodrich et al. [6] showed
how to deal with arrangements of line segments in IR3

and Fortune [5] generalized the input to polyhedral sub-
divisions.

In this work, we propose extensions for both ISR
and ISRBD. First, we propose dynamic rounding (Sec-
tion 2). Then, we show how to support line segments in
IR3 (Section 3). We conclude in Section 4.

2 Dynamic Rounding

Guibas and Marimont [9] showed how to maintain hi-
erarchical vertical cell decomposition of line segments
in IR2 (VCD) [13] with Snap-Rounded representation.
They further showed how to support insertions and dele-
tions of line segments. We use the VCD analogously,
but will not attempt to describe how we use it in de-
tail. This information is mainly technical and will be
described in a detailed report.

Let S be the set of input line segments and let A(S)
be the output arrangement of S (in either variant). We
next show how ISR and ISRBD proceed.

2.1 Dynamic Iterated Snap Rounding

Insertion. Let s be the line segment we insert. We
find all the pixels that need to be heated as a result
of inserting s: one or two for its endpoints and others
that correspond to intersections with the input line seg-
ments (these are found with the VCD). We collect only
the above pixels that are not hot yet. Let H denote
this set. Except of rounding s, we also round any link
of A(S) that intersects the pixels in H ; we find these
links (using the VCD) and use the rounding routine of
ISR to round links [10].

Deletion. We delete a line segment s from A(S). By
doing so, it is possible that hot pixels cool down (cease
to be hot). These are the hot pixels that would not
have been heated if s had not been inserted to A(S).
This information can be easily saved under the hot pixel
data structure. Then we process each cooling of a hot
pixel by modifying the output of some of the input line
segments as follows. Let s′ be any line segment. We
construct a hierarchical tree of links for s′, denoted by
T (s′). In the first level, T (s′) contains s′. In the sec-
ond, T (s′) contains the links through the center of hot
pixels that s′ intersects in the order of intersections and
so on. Note that the output of s′ is the links at the
bottom of T (s′), ordered by the DFS. Let h be a hot
pixel that is cooled down. Let l be the top link in T (s′)
that intersects with h but does not end there (assume
that such a link exists). Consider the two links l1 and
l2, one level below l, that are adjacent to h. We first
delete both subtrees of l1 and l2 from T (s′). Let h1 and
h2 be the hot pixels that contain the other endpoints
of l1 and l2, respectively. We insert the link that con-
nects the centers of h1 and h2 to T (s′) by calling the
rounding routine of ISR. The new representation of s′

will correspond to the modified T (s′).

Let A be complexity of A(S). Let H denote the set
of hot pixels and let W denote the set of pixels that
either contain an endpoint of a vertical attachment in
the VCD or is a neighbor of such a pixel. For any pixel p,
its degree will be denoted by |p|. Note that this quantity
may be larger in ISR than in SR, as links are broken to
create multiple ones. The following is a theorem that
bounds the total insertion time of n line segments. It
follows from the analysis in [9].

Theorem 1 Performing n insertions using Dynamic

Iterated Snap Rounding takes O(n log n + A +
Σh∈H|h| log |h| + Σw∈W |w|) time.

2.2 Dynamic Iterated Snap Rounding with Bounded

Drift

Insertion. The insertion of line segments is similar to
the insertion in the previous subsection, with the mod-
ifications that ISRBD requires (see Section 1). When
inserting a line segment s, we proceed as follows. We
find the hot pixels that are centered within the forbid-
den loci of s. For each, we heat a corresponding pixel
as explained in [15]. This process may cascade as the
heated pixel may be centered within a forbidden loci of
another line segment. Then we round s and the links
that intersect with the hot pixels in the way ISR pro-
ceeds (see the previous section). Finally, we delete some
of the degree-2 hot pixels similarly to ISRBD (see sec-
tion 1 and [15] for details).

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Deletion. When deleting a line segment s, we need
to do both the work of the deletion that is presented
in Section 2.1 and the work required by ISRBD which
we describe next. For each line segment, we collect the
new pixels that were heated before to constrain its devi-
ation (denote this set by Ξ). The pixels of Ξ have to be
cooled down when deleting s, unless they were used to
constrain the deviation of other line segments as well.
As we mentioned above, the process of heating pixels
may cascade. Thus, we also need to delete all the pixels
that were heated as a result of cascading from the pix-
els of Ξ (we save the corresponding data). After all of
the hot pixels are cooled down, we proceed in the same
way as the removal of ISR, namely reconstructing the
hierarchy of the output of the line segments that are
effected by this process.

Figure 1 illustrates the results of inserting and delet-
ing a line segment.

The following theorem bounds the total insertion time
of n line segments. It is mostly dominated by the rou-
tines of ISRBD. In this case H denotes the set of all hot
pixels, including the ones ISRBD heats to constrain the
deviation of the output.

Theorem 2 Performing n insertions using Dynamic

Iterated Snap Rounding with Bounded Drift takes

O(n3(log n + |H|ε) + κ(κ log n + |H|ε) + Σw∈W |w|) time

for any ε > 0 where κ is the number of degree two ver-

tices that do not correspond to endpoints.

3 Line Segments in IR3

Goodrich et al.[6] extended SR to line segments in IR3.
In IR3, the space is partitioned into a set of voxels (unit-
cubes) centered at points with integer coordinates. Sim-
ilarly to IR2, voxels which contain line segment end-
points are hot. The rest of the hot voxels are deter-
mined as follows. For each pair of line segments s1 and
s2, find l = (p1, p2), the shortest link that connects them
with length d in the L∞ metric. If d ≤ 1, we heat the
voxels that contain p1 and p2 (possibly the same voxel
contains both). To test whether two line segments are
close, they define a tube τ(s) to be the Minkowski sum of
s and an axis-oriented unit cube centered at the origin.
It is easy to verify that two line segments are within an
L∞ distance of 1 if and only if their tubes intersect. To
report the tubes that intersect, they use a range search-
ing technique for semi-algebraic varieties [1] (denoted by
φ). The main idea is to define a search structure of the
faces of the tubes that finds all the segments of other
tubes that penetrate the faces. We use φ for the same
purpose. Then the output of any line segment is the
polygonal chain through the centers of the hot voxels it
meets, in the order of appearance. We next present how
ISR and ISRBD proceed.

3.1 Iterated Snap Rounding

We first find the hot voxels using φ. Then we round
links to hot voxels in the way ISR proceeds [10], with the
analogous changes. To find the hot voxels that intersect
a given line segment, we use the multi level partition tree
data structure [2] on the hot voxels. We project the hot
voxels onto the three planes x = 0, y = 0 and z = 0, and
build the multi level partition tree for each. Then an
IR3 query is carried out by intersecting the query results
of the three IR2 trees; each queries the projection of the
line segment.

The next theorem summarizes ISR in IR3. It follows
from analyzing the algorithm of ISR with the necessary
modifications we described above.

Theorem 3 Iterated Snap Rounding of line segments

in IR3 can be computed in O(n
8

5
+ε + K + L

2

3 N
2

3
+ε + L)

time and O(n
8

5 +K+L
2

3 N
2

3
+ε +N) space for any ε > 0

where K denotes the number of intersecting tubes, L is

the overall number of links in the chains produced by the

algorithm and N is the number of hot voxels.

3.2 Iterated Snap Rounding with Bounded Drift

Let δ be the deviation bound. We first decide which
voxels to heat in order to restrict the deviation of any
line segment. We then cool down degree-two hot vox-
els which are both not associated with endpoints and
will not cause line segments to drift too much if deleted
(analogous to the work in [15]).

Note that in IR2 we define forbidden loci to be the
two stripes to the left and right of a line segment s,
that necessarily contain the center of any hot pixel that
may be the first to round s too far. In IR3, the forbidden
loci are constructed analogously as follows. For any line
segment s, let v1 and v2 be the voxels that contain its
endpoints. Let B(s) be the bounding box of the centers
of v1 and v2. Due to the weakly-monotone property,
the output of s will be located within B(s). Let C(s)
be the Minkowski sum of s with a ball of radius δ cen-
tered at the origin. It follows that the output of s must
be located within D(s) = B(s) ∩ C(s). Note that the
maximum deviation any link may undergo during one

rounding step is
√

3

2
units. It follows that if any hot

voxel rounds the output of s beyond D(s), it must be

centered at a point that is within distance 0 < d ≤
√

3

2

from D(s), and inside B(s). We define C′(s) to be the

Minkowski sum of s with a ball of radius δ+
√

3

2
centered

at the origin. It follows that the forbidden loci of s is
F (s) = (C′(s) \ C(s)) ∩ B(s).

The routine for heating voxels that restrict the devi-
ation proceeds as follows. For each hot voxel v, we find
the set of line segments whose forbidden loci contain its
center. Let s be a line segment in this set. We heat a
voxel which both intersects s and will guarantee that s

19th Canadian Conference on Computational Geometry, 2007

will not be rounded to v. There are three questions to
address at this point.

First, which voxel do we heat on s? For each voxel v,
we partition IR3 into 8 octants using the three orthog-
onal walls through the center of v. Ignoring degener-
ate cases (which are not difficult to handle), s will pass
through three or four octants. Let Ψ(s, v) be an octant
that does not contain any of the endpoints of s and
let s′ = s ∩ Ψ(s, v). We heat the voxel which contains
the middle of s′. By heating it we are guaranteed that
s will never be rounded to v; otherwise it would con-
tradict the weakly-monotone property3. Note however,
that if there is already a hot voxel that intersects s′,
such that its 3 coordinates differ from the correspond-
ing coordinates of v, we need not heat any voxel.

The second question is how to find the line segments
whose forbidden loci contain the center of v. It would
be desirable to use a range search data structure of
{F (s)|s ∈ S}. However, to the best of our knowledge
such a data structure is yet not available in the litera-
ture. So instead we will test each pair of line segment-
hot voxel.

Next we ask what would be the complexity of the out-
put. In [15], the selection of pixels to heat for restrict-
ing the deviation was such that the output complexity
of ISRBD is not increased4. It is not clear how to do
the same in IR3 and whether it is possible. We leave
this task for a future work. We believe that the output
complexity does not increase unless the input is patho-
logic, if at all. We note that the number of new voxels
is finite as we deal with finite input of line segments.

The next theorem summarizes ISRBD in IR3. It fol-
lows from analyzing the algorithm of ISRBD in IR2 with
the necessary modifications we described above.

Theorem 4 Iterated Snap Rounding with Bounded

Drift of line segments in IR3 can be computed in O(n3 +

K + L
2

3 N
2

3
+ε + L + κ(κ log n + Nε)) time and O(n

8

5 +

L
2

3 N
2

3
+ε +N +K1+ε) space for any ε > 0. The param-

eters were defined in Theorem 3.

4 Conclusions

ISR and ISRBD are variants of SR. Both may be more
beneficial to use than SR in different situations. In this
work we expanded the capabilities of both ISR and IS-
RBD to support both dynamic rounding and line seg-
ments in IR3.

Snap Rounding has drawn attention in the last two
decades. Most recently, Snap Rounding was extended to
support Bézier curves [4]. We believe that providing the

3Analogously to [15], we require δ > 3
√

3

2
to make this idea

works. We postpone this discussion to the detailed report.
4It is still open if this is the case when links that are shared

by multiple polygonal chains are counted only once.

options of ISR and ISRBD variants to other versions of
SR may be useful for users when choosing the rounding
model.

References

[1] P. K. Agarwal and J. Matousek. On range searching
with semialgebraic sets. In Mathematical Foundations

of Computer Science, pages 1–13, 1992.

[2] P. K. Agarwal and M. Sharir. Applications of a new
space-partitioning technique. Discrete Comput. Geom.,
9:11–38, 1993.

[3] M. de Berg, D. Halperin, and M. Overmars. An
intersection-sensitive algorithm for snap rounding.
Comput. Geom. Theory Appl., 36(3):159–165, 2007.

[4] A. Eigenwillig, L. Kettner, and N. Wolpert. Snap
rounding of bzier curves. In Proc. 23th ACM Sympo-

sium on Computational Geometry, SoCG, 2007.

[5] S. Fortune. Vertex-rounding a three-dimensional
polyhedral subdivision. Discrete Comput. Geom.,
22(4):593–618, 1999.

[6] M. Goodrich, L. J. Guibas, J. Hershberger, and
P. Tanenbaum. Snap rounding line segments efficiently
in two and three dimensions. In Proc. 13th Annu. ACM

Sympos. Comput. Geom., pages 284–293, 1997.

[7] D. H. Greene. Integer line segment intersection. Un-
published Manuscript.

[8] D. H. Greene and F. F. Yao. Finite-resolution compu-
tational geometry. In Proc. 27th Annu. IEEE Sympos.

Found. Comput. Sci., pages 143–152, 1986.

[9] L. Guibas and D. Marimont. Rounding arrangements
dynamically. Internat. J. Comput. Geom. Appl., 8:157–
176, 1998.

[10] D. Halperin and E. Packer. Iterated snap rounding.
Computational Geometry: Theory and Applications,
23(2):209–225, 2002.

[11] J. Hershberger. Improved output-sensitive snap round-
ing. In Proc. 22th ACM Symposium on Computational

Geometry, SoCG, pages 357–366, 2006.

[12] J. Hobby. Practical segment intersection with finite pre-
cision output. Comput. Geom. Theory Appl., 13:199–
214, 1999.

[13] K. Mulmuley. Computational Geometry: An Introduc-

tion Through Randomized Algorithms. Prentice Hall,
Englewood Cliffs, NJ, 1994.

[14] E. Packer. Finite-precision approximation techniques
for planar arrangements of line segments. In Master’s

thesis, Dept. Comput. Sci., Tel-Aviv Univ., 2002.

[15] E. Packer. Iterated snap rounding with bounded drift.
In Proc. 22th ACM Symposium on Computational Ge-

ometry, SoCG, pages 367–376, 2006.

