CCCG 2007, Ottawa, Ontario, August 20-22, 2007

Cache-Oblivious Output-Sensitive Two-Dimensional Convex Hull

Peyman Afshani*

Abstract

We consider the problem of two-dimensional output-
sensitive convex hull in the cache-oblivious model. That
is, we are interested in minimizing the number of cache
faults caused when computing the convex hull of a set of
N points on a plane. We are interested in the output-
sensitive case where number of cache misses are ana-
lyzed in the worst case based on both the input size N
and output size H (number of extreme points that lie
on the final convex hull ).

There is the lower bound of %log% % to match
where M is the cache size and B is the block size. We
present a simple algorithm which almost matches this
lower bound. The number of cache misses our algorithm
causes is

0 Nl 1 M ]\71 H
max EOgOgE,EOg%E .

Thus, it can only be an additional term %log log%
away from the optimal.

1 Introduction

Efficient computation of the convex hull of a set of
points on a plane is a fundamental problem in compu-
tational geometry. In the output-sensitive convex hull
problem we are interested in designing an algorithm
which depends both on input size (number of points)
and output size (number of points on the resulting con-
vex hull). As the number of points grow and become
much larger than the cache size, the effects of cache
faults start to become important in both of these prob-
lems.

Memory in today’s computers consists of several lay-
ers. Algorithms were traditionally designed for a flat
random access memory (RAM) with a uniform access
time. However, in reality, there is an order of magni-
tude of difference between access times of different layers
in the memory hierarchy.

The cache-aware model [1] is the simplest of hierarchi-
cal memory models which accounts for only two levels
of memory. There is a cache memory of size M on the

*Cheriton School of Computer Science, University of Waterloo,
pafshani@cs.uwaterloo.ca

TCheriton School of Computer Science, University of Waterloo,
afarzan@cs.uwaterloo.ca

Arash Farzan®

first level which is divided into blocks of size B; on the
second level there is a memory of unlimited size having
the same block size.

The cache-oblivious model, introduced by Frigo et al.
[6] is a simple and elegant multiple-level memory model
and is different from the cache-aware model in that it
makes no use of hardware specific parameters (such as
cache or block size M, B). Designing algorithms with-
out any knowledge of M, B results in algorithms that
behave similarly in all levels of the memory hierarchy.
More specifically, if a cache-oblivious algorithm is opti-
mal between two levels of memory hierarchy, it performs
optimally on all levels of the memory hierarchy. As we
use the cache-oblivious sorting algorithm, we need to
make the tall cache assumption of M > B¢ for some
fixed € > 0, to get the optimal sorting bound [3].

2 Preliminaries and background

Given N points in two dimensions there are many op-
timal convex hull algorithms in the RAM model that
run in O(N log N). Kirkpatrick and Seidel [8] gave the
first optimal output-sensitive convex hull algorithm that
runs in time O(N log H) where H is the size of the con-
vex hull.

Obtaining a cache-aware or even a cache-oblivious
convex hull algorithm in two dimensions is not hard.
In fact, if we merely sort the point set using any cache
aware/oblivious sorting algorithm [1, 6], then using Gra-
ham’s scan, we can get an algorithm with total number
of O (%log% %) cache misses. Goodrich et al. [7]
present an output-sensitive convex hull algorithm which
makes O (% log i %) cache misses in the external-

B

memory model. Arge and Milterson [2] showed that
in the cache-aware model, these are as best as one can
do.

We design a cache-oblivious algorithm for the output-
sensitive convex hull problem. Clearly, any lower bound
in the cache-aware model also holds in the cache-
oblivious model.

We represent the number of points, number of points
on the convex hull respectively by N, H and total cache
size and block size respectively by M, B. We also set
n:%,m:%,andh:%.



19th Canadian Conference on Computational Geometry, 2007

3 The Algorithm

The algorithm is in fact a modification of Chan’s output
sensitive algorithm [4]. In this section, we consider the
equivalent dual problem of finding the upper envelope
of N lines in plane.

First assume we are asked to output at most H upper
hull segments.

Lemma 1 For a set H of N lines in R? and a pa-
rameter H, one can find H upper hull edges in only
O(max {n, nlog,, h)} cache misses.

Proof. Partition H into r = % groups of size H each.
For each group of H lines, run the optimal (but not
output sensitive) algorithm to obtain the upper hull of
each group using O(hlog,, h) cache misses. This will
create r chains such that the maximum size of each chain
is H. We need to show that it is possible to merge
these chains into a final chain causing a small number
of cache misses. We need to note that this the part
which deviates significantly from the original algorithm
of Chan.

Let S be the set of all segments constituting the
chains. For a segment s € S, denote the x-coordinate of
the left end point of s with x4(s). Partition S into h sets
G1,...Gy, of size r each, such that for every i < j and
every u € G, v € G we have z¢(u) < x¢(v). we use the
following lemma proved by Farzan [5] (Thm. 4. 3. 1):

Lemma 2 Given k numbers in a contiguous list can
be distributed into T buckets By, ... By of roughly equal
size such that an element in a bucket B; is less than any
element in a bucket B; with a larger index (ie. i < j)
using O (% log,,, %) cache misses in the cache oblivious
model under the tall cache assumption.

Hence this distribution step can be done in
O(nlog,, h) cache misses under the cache oblivious set-
ting. For every ¢ the segments of G; are stored sequen-
tially but in arbitrary order. Finally, let z; and X;
denote the minimum and maximum elements of the set
{z¢(u)|u € G;} (in other words, the minimum and max-
imum left z-coordinate in G;).

We merge the chains in H iterations and at each it-
eration we process one set G, starting from G;. At
iteration ¢ + 1 we maintain the invariant that the upper
hull of all the segments in .S; = G; UGs - -- U G; to the
left of the vertical line x = X, has been found. Since
the rest of the segments are to the right of the vertical
line x = X; this implies that upper hull of S; up to the
vertical line x = X; will also appear in the upper hull of
S. We also maintain a set A of “active” segments: the
set of all the segments in S; which cross the vertical line
x = X;. Since we have r upper hull chains, the total
size of set A is 7.

The above observations imply to process G;41 we only
need to look at A and G;11. Thus, if we do a linear
search of all the segments in A U G;4+1 we will be able
to find the next upper hull segment, if there is any. We
repeat these linear search steps until we have discovered
the upper hull segment at the point x = X;11. At this
point, using one extra linear scan we update the set of
active segments to contain all the segments intersecting
the vertical line x = X;1,. Each linear scan will cause

o (IALB”I‘) = O(f) cache misses and thus discovery

of k; upper hull edges will be accompanied by O(Tgi)

total cache misses. At each point if we discover the
H-th edge, we break the algorithm and output all the
edges discovered by the algorithm. Since at most H
edges will be discovered by the convex hull algorithm,
the total number of cache misses sums up to:

H
ki +1
0 (Zr(;—) +nlogmh>

i=1

0 <7£ +nlog,, h>
= O(nlog,, h).

For values H < m as we have to scan over the input set
the cache misses are O(n). Thus, the overall number of
cache misses is O(max {n, nlog,, h)}. O

Finally we use the technique of guessing the output
size, originally employed by Chan [4].

Theorem 3 For a set P of N points in R%, one can
compute the convex hull of P with at most

0 ]\f1 1 M N1 H
max E 0og OgE, E Og% E

cache misses in which H 1is the size of the final convex
hull.

Proof. Similar to Chan’s algorithm, we run the al-
gorithm of Lemma 1 with values of h chosen from a
doubly exponential sequence. More specifically, we set
H; = ¢*', starting from i = 0 until the time all the edges
of the upper hull have been discovered.

For those values of the sequence greater than M, the
total number of cache misses can be expressed as a ge-
ometric series:

loglog, h _ log log, h
Z nlog,, & = Z 2'nlog,, ¢
i=log log i=log log m
= O(2lslshplog ¢
= O(n(log. h)(log,, c))
= O(nlog,, h).

For smaller values of the sequence, since there is a scan
over the input for each such value, there are O(n) cache



CCCG 2007, Ottawa, Ontario, August 20-22, 2007

misses in each run. Hence, the total number of cache
misses is

O (max {nloglogm, nlog,, h}).

4 Conclusion

We considered the problem of output-sensitive convex
hull in the cache-oblivious model, and presented a sim-
ple algorithm for it. The algorithm almost matches the

lower bound O (% log M %) except for an additional

term O (% log log %) which we argued is a small term
and is negligible in any practical application.

References

[1] A. Aggarwal and J. S. Vitter. The I/O complexity of
sorting and related problems. In ICALP ’87: Proceedings
of the 14th International Colloquium, on Automata, Lan-
guages and Programming, volume 267 of LNCS, pages
467-478. Springer-Verlag, July 1987.

[2] L. Arge and P. B. Miltersen. On showing lower bounds
for external-memory computational geometry problems.
In J. Abello and J. S. Vitter, editors, External Memory
Algorithms and Visualization, pages 139-160. American
Mathematical Society Press, Providence, RI, 1999.

[3] G.S. Brodal and R. Fagerberg. On the limits of cache-
obliviousness. In Proc. 35th Annual ACM Symposium on
Theory of Computing, pages 307-315, 2003.

[4] T. Chan. Optimal output-sensitive convex hull algo-
rithms in two and three dimensions. Discrete and Com-
putational Geometry, 16:361-368, 1996.

[6] A. Farzan. Cache-Oblivious Searching and Sorting in
Multisets. Master’s Thesis, University of Waterloo, 2002.

[6] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachan-
dran. Cache-oblivious algorithms. In FOCS ’99: Pro-
ceedings of the 40th Annual Symposium on Foundations
of Computer Science, pages 285—297. IEEE Computer
Society Press, 1999.

[7] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proceedings of the 34th Annual Symposium on Founda-
tions of Computer Science, pages 714-723, 1993.

[8] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm. STAM J. Comput., 15(1):287-299,
1986.



