
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Efficient kinetic data structures for MaxCut

Artur Czumaj ∗† Gereon Frahling ‡ Christian Sohler §¶

Abstract

We develop a randomized kinetic data structure that
maintains a partition of the moving points into two sets
such that the corresponding cut is with probability at
least 1 − % a (1 − ε)-approximation of the Euclidean
MaxCut. The data structure answers queries of the
form “to which side of the partition belongs query point
p?” in O(21/εO(1)

log2 n/ε2(d+1)) time. Under linear
motion the data structure processes Õ(n log(%−1)/εd+3)
events1, each requiring O(log2 n) expected time ex-
cept for a constant number of events that require
Õ(n · ln(%−1)/εd+3) time. A flight plan update can be
performed in O(log3 n · ln(%−1)/εd+3) average expected
time, where the average is taken over the worst case up-
date times of the points at an arbitrary point of time.
No efficient kinetic data structure for the MaxCut has
been known before.

1 Introduction

The problem of clustering data sets according to some
similarity measures belongs to the most extensively
studied optimization problems. In this paper we will
focus on clustering moving points as described in the
framework of kinetic data structures (KDS). The frame-
work of kinetic data structures has been introduced by
Basch et al. [3] and it has been used since as the cen-
tral model of studying geometric objects in motion, see,
e.g., [1, 3, 11, 12] and the references therein. In the
kinetic setting, we consider a set of points in Rd that
are continuously moving. Each point follows a (known)
trajectory that is defined by a continuous function of
time; for simplicity of presentation, we will assume that
it is a linear function. Additionally, we allow the points
to change their trajectory, i.e., to perform a flight plan
update. The KDSs are data structures to maintain a cer-
tain attribute (for example, in the case of a clustering

∗Department of Computer Science, University of Warwick,
czumaj@dcs.warwick.ac.uk

†Research supported in part by the Centre for Discrete Math-
ematics and its Applications (DIMAP), University of Warwick.

‡Google Research, New York, gereon@google.com
§Heinz Nixdorf Institute and Institute for Computer Science,

University of Paderborn, csohler@upb.de
¶Supported by DFG grant Me 872/8-3.
1We use the eO-notation to suppress logarithms in the largest

occurence of a (function of a) variable, i.e. for any function f(x)

we have f(x) · log(f(x)) = eO(f(x)).

problem, assignment of the points to the clusters) under
movement of the points. The main idea underlying the
framework of KDSs is that even if the input objects are
moving in a continuous fashion, the underlying combi-
natorial structure of the moving objects changes only at
discrete times. Therefore, there is no need to maintain
the data structure continuously but rather only when
certain combinatorial events happen.

To measure the quality of a KDS, we will consider
the following two most important performance measures
(for more details, see, e.g., [11, 12]): the time needed to
update the KDS when an event occurs and a bound on
the number of events that may occur during the motion.
Another important measure is the time to handle flight
plan updates.

In this paper, we consider the Euclidean version of
the MaxCut problem. For metric graphs (and hence
also for geometric instances), Fernandez de la Vega and
Kenyon [7] designed a PTAS. For the Euclidean version
of the MaxCut that we study in this paper, it is still
not known if the problem is NP-hard but a very fast
PTAS can be obtained using a recent construction of
small coresets for MaxCut [8].

In this paper, we develop the first efficient KDS for
approximate Euclidean MaxCut for moving points. Our
KDS is based on a coreset construction for MaxCut from
[8]. In [8], it was shown in the context of data streaming
algorithms that one can obtain a coreset from the distri-
bution of certain sample sets of the point set in nested
grids. Our KDS is based on the idea of maintaining
such a distribution under motion. The main difficulty
of applying that approach lies in the interplay between
a lower bound on the cost of the solution and the num-
ber of events, which requires some new ideas. Our KDS
is not only the first efficient KDS for approximate Eu-
clidean MaxCut, but it also puts the MaxCut problem
into a very small set of complex geometric problems for
which there exists a KDS requiring only Õ(n) events;
many geometric problems, some even surprisingly sim-
ple ones, are known to have no KDS with o(n2) events.

2 Previous results used by our algorithm

We review a coreset construction from [8] and focus on
the MaxCut problem. Let P be a point set in the Rd.
For simplicity of presentation, we normalize the cost of
the optimal solution of the MaxCut problem by dividing
the cost by the number of points n, and define for all

19th Canadian Conference on Computational Geometry, 2007

partitions of P into C1 and C2:

M(C1, C2) := 1
n ·MaxCut(P,C1, C2)

= 1
n

∑
q1∈C1,q2∈C2

d(q1, q2) .

We furthermore define

Opt := 1
n · max

C1,C2
MaxCut(P,C1, C2) = max

C1,C2
M(C1, C2) ,

and for weighted point sets C1, C2 with weight functions
w1 : C1 → N and w2 : C2 → N, we define

M(C1, C2) :=

∑
q1∈C1,q2∈C2

w1(q1) · w2(q2) · d(q1, q2)∑
q1∈C1

w1(q1) +
∑

q2∈C2
w2(q2)

.

Definition 1 (ε-coresets) A point set Q with integer
weights w(q) is an ε-coreset for P if there exists a map-
ping π from P to Q such that (i) π−1(q) = w(q) for
every q ∈ Q and (ii) the objective value M(C1, C2) for
any partition C1, C2 of P differs by at most ε ·Opt from
the objective value M(π(C1), π(C2)) of the correspond-
ing partition of Q (think of π(C1) = {π(p)|p ∈ C1} as a
set with weights w(q) = |{p ∈ C1|π(p) = q}|).

Let b be the largest side width of the bounding box of
P . In [8] a family of nested grids G(i) is used, where G(i)

denotes a grid of cell width b/2i. Let % be a confidence
parameter, 0 < % < 1. The coreset algorithm depends
on a parameter δ. For each grid G(i), a random sample
S(i) is chosen, where each point from P is added to
S(i) with probability α

δ 2i , where α = 12ε−2 ln(%−1) + 1.
Thus, the random sample S(i) has expected size s =

α
δ 2i · n.

Lemma 2 (Coresets for MaxCut [8]) There is an
algorithm that takes as input the number of points
from S(i) in each grid cell C ∈ G(i) and computes
a weighted set of points PC which satisfies the fol-
lowing constraints with probability at least 1 − %: If

δ ≤ ε·Opt

4
√

d (1+log n) b

(
ε

56
√

d

)d

the set PC is a (c ·ε)-coreset

of P for some constant c. If ε·Opt

8
√

d (1+log n) b

(
ε

56
√

d

)d

≤

δ ≤ ε·Opt

4
√

d (1+log n) b

(
ε

56
√

d

)d

then the size of PC is at

most 34
√

d (1+log n)
ε

(
56

√
d

ε

)d

.

Note that a good choice for parameter δ depends on
the cost of an optimal solution.

Theorem 3 (Kinetic Heaps [2]) Let P be an ini-
tially empty set of points moving along linear trajecto-
ries in R1. Let σ = σ1, . . . , σm be a sequence of m oper-
ations σi of the form Insert(p, ti) and Delete(p, ti),
such that for any two operations σi, σj with i < j we
have ti < tj (the operations are performed sequentially

in time). An Insert(p, ti) inserts at time ti point p
into P . A Delete(p, ti) removes p from P at time ti.
A kinetic heap maintains the biggest element of P . It
requires O(log m) time to process an event and the ex-
pected number of events is O(m log m). Insertions and
deletions are performed in expected time O(log2 m).

Theorem 4 (Bounding Box Approximation [1])
Let P be a set of n points moving in Rd. If P is
moving linearly, then after O(n) preprocessing, we can
construct a kinetic data structure of size O(d) that
maintains a 2-approximation of the smallest orthogonal
box containing P . The data structure processes O(d2)
events, and each event takes O(1) time. The sides of
the maintained box are moving linearly between the
events.

It can be decided in constant time if a flight plan up-
date of a point p changes the data structure. At each
point of time only flight plan updates of O(d) points can
potentially change the data structure.

3 Kinetic data structures for MaxCut

In this section we describe a KDS to maintain a (1− ε)-
approximation of a maximum cut. Our data structure
supports queries of the type “to which side of the parti-
tion belongs query point p?”. To support such a query
the algorithm computes a coreset that has complexity
O(log n/εd+1). Our data structure depends on a pa-

rameter K = α/δ∗, where δ∗ =
ε

“
ε

56
√

d

”d

4
√

d (1+log n)
is a lower

bound for the value of δ, which can be obtained by set-
ting Opt = b. We first create a sample set Si,j for every
0 ≤ i, j ≤ log(Kn). Si,j is obtained from P by choos-
ing each point p ∈ P independently at random with
probability min{ K

2i+j , 1}.
We define G(0) as a 2-approximated bounding cube of

P and G(i) as a partition of this bounding cube into 2id

equal sized (hyper-)cubes. For each 1 ≤ i, j ≤ log(Kn),
we maintain the set of all cells C ∈ G(i) containing
sample points from Si,j and the number of sample points
in each non-empty cell. Notice that for a fixed value of j
the sample sets Si,j correspond to the sample sets S(i)
needed to construct a coreset with value δ = δ∗ · 2j .
Lemma 2 therefore shows that at least for one value
of j it is possible to compute a small coreset from the
maintained information using the approach of [8].

The data structure. We assume that the cells in grid
G(i) are numbered from 1 to 2id. For each sample set
Si,j we maintain a search tree Ti,j that stores the cells in
grid G(i) that contain at least one point from Si,j . For
each non-empty cell we maintain 2d kinetic heaps. For
1 ≤ k ≤ d we maintain one kinetic max-heap and one
kinetic min-heap, where the priority of points is given
by their k-th coordinate.

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

We maintain a 2-approximation of the bounding cube
using the KDS from [1]. The O(d2) events of this KDS
are called major events. Between any major events all
movements of points and cell borders are linear.

The events. Additionally to the major events and
the heap events (events caused by the kinetic heaps),
our data structure stores the following (possible) events
in a global event queue: For each grid G(i) and each
non-empty cell we have an event for each dimension k,
1 ≤ k ≤ d, when the maximum or minimum point with
respect to that dimension crosses the corresponding cell
boundary in that dimension. These events are called
minor events. At each major event the movement of
the grid boundaries changes and we must update every
event that involves a boundary, i.e., every minor event.

Time to process events. We first consider minor
events, when a point p in some set Si,j moves from one
cell C1 of the grid into another cell C2. p is then deleted
from 2d heaps corresponding to C1 and is inserted into
the 2d heaps corresponding to C2. If the point moves
into a cell that was previously empty, we must insert the
index of C2 into the search tree Ti,j and initialize the 2d
heaps. If p was the only point in C1 we have to delete
the 2d heaps. Since in O(log2 n) time one can insert a
point in a heap or search tree and since any insertion in
a randomized kinetic heap creates O(log n) new events
in expectation, we get:

Lemma 5 Any minor event can be processed in
O(d log2 n) time. It creates O(d log n) new events in
randomized kinetic heaps in expectation. ut

Lemma 6 Any major event can be processed in ex-
pected time O(d K n log n).

Proof. The time to setup our data structure at a ma-
jor event is dominated by the time to setup the ki-
netic heaps for the boundary events. Since each kinetic
heap consisting of m points can be constructed in time
O(m · log m) we have to count the number of sample
points in all kinetic heaps. Each sample point is in-
serted into 2d kinetic heaps. The expected number of
points in Si,j is Kn/2i+j . By linearity of expectation we
get that the total number of points in all kinetic heaps
is

∑
i,j 2d · Kn

2i+j = O(dKn). �

Lemma 7 Between major events, every point crosses
at most d · (2i − 1) cells in grid G(i).

Proof. Let us consider an arbitrary point p. We regard
the cell boundaries in each dimension separately. In grid
G(i) we have 2i − 1 internal boundaries. Since both p
and the boundaries move linearly in time, p can cross
each boundary at most once. Since this can happen in
each of the dimensions, the lemma follows. �

Corollary 8 The expected number of minor events is
O(d3 K n · log(Kn)).

Proof. The expected number of minor event involv-
ing points from Si,j is at most K n

2i+j · d · 2i = d K n/2j .
Summing up over all i, j we get that there are at most
O(d K n log(Kn)) events. �

Corollary 9 The expected number of heap events is
O(d4 ·K · n · log2(Kn)).

Proof. Every minor event creates an expected num-
ber of O(d log n) new events in randomized kinetic
heaps. Linearity of expectation implies that the ex-
pected number of events in kinetic heaps is O(d4 · K ·
n · log2(Kn)). �

Flight plan updates. In KDS it is typically assumed
that at certain points of time the “flight plan” of an
object can change. The data structure is notified that
a point now moves in another direction (possibly at a
different speed) and we have to update all events in the
event queue that involve this particular point. In our
case we distinguish between two types of points. First,
there are the two points that currently define the size
of the bounding cube within the data structure from
[1]. If the movement of one of these points is changed,
the movement of all cells change and we have to update
every event that involves a cell boundary (this is similar
to the case of major events). Additionally, we have to
update every 1-dimensional bounding cube we maintain.

If the flight plan of any other point is updated we
simply have to update all events it is involved in and
the bounding cube data structure. Since it requires
O(log2 n) time to update a kinetic heap we have to com-
pute the expected number of such heaps a point is in-
volved in. Every point is stored in 2d heaps for each set
Si,j it is contained in. These are O(dK) kinetic heaps
in expectation (analogous to proof of Lemma 6)

Assume we fix some point of time and specify for each
point an arbitrary flight plan update. If we choose one of
these updates uniformly at random then the expected
time to perform the update is small, i.e., the average
cost of a flight plan update is low:

Lemma 10 A flight plan update can be done in
O(log3 n · ln(%−1)/εd+3) average expected time.

Extracting the coreset and a solution. We can do
a binary search on the different values of δ(j) = δ∗ ·
2j . The coreset technique described in [8] is capable
to identify a value of δ, which leads to a small coreset
having the desired approximation guarantees of Lemma
2. We then apply the MaxCut computation method
described in [8] to extract a solution on the coreset in
Õ(n2 · 21/εO(1)

) time.

19th Canadian Conference on Computational Geometry, 2007

We finally obtain our main theorem, where we assume
that d is a constant:

Theorem 11 There is a kinetic data structure that
maintains a (1 + ε)-approximation for the Euclidean
MaxCut problem, which is correct with probability 1−%.
The data structure answers queries of the form “to
which side of the partition belongs query point p?” in
O(log2 n · ε−2(d+1) · 21/εO(1)

) time. Under linear mo-
tion the data structure processes Õ(n log(%−1)

εd+3) events,
which require O(log2 n) expected time except for a con-
stant number of events that require Õ(n · ln(%−1)/εd+3)
time. A flight plan update can be performed in O(log3 n·
ln(%−1)/εd+3) average expected time, where the average
is taken over the worst case update times of the points
at an arbitrary point of time.

4 Conclusions

In this paper we developed the first kinetic data struc-
ture for the Euclidean MaxCut problem. Our KDS
is based on a coreset construction from [8]. For the
streaming problems, the construction in [8] works also
for other problems like k-median and k-means cluster-
ing, maximum matching, MaxTSP, and maximum span-
ning tree. Our KDS can be extended to the three maxi-
mization problems mentioned above (maximum match-
ing, MaxTSP, and maximum spanning tree). However,
the runtime to compute a solution from the coreset
(which has to be done for each query to the data struc-
ture, or, alternatively with each event) can differ sig-
nificantly. For the maximum spanning tree problem we
can easily obtain similar results as for MaxCut; for the
MaxTSP we do not know how to do the computation
efficiently (and hence we do not obtain a very efficient
KDS).

Extending our KDS to k-median and k-means clus-
tering requires additional ideas. The technical problem
is here that one cannot get a lower bound on the solu-
tion from the width of the bounding box. Hence, it is
not clear how to get an upper bound on the number of
events.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadara-
jan. Approximating extent measures of points.
Journal of the ACM, 51(4):606–635, July 2004.

[2] J. Basch. Kinetic Data Structures. Ph.D. thesis,
Stanford University, 1999.

[3] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. J. Algorithms, 31(1):1–
28 1999.

[4] J. Basch, L. J. Guibas, and G. Ramkumar. Sweep-
ing lines and line segments with a heap. Proc. 13th
Annual ACM Symposium on Computational Geom-
etry, pp. 469–471, 1997.

[5] S. Bespamyatnikh, B. Bhattacharya, D. Kirk-
patrick, and M. Segal. Mobile facility location.
Proc. 4th DIAL M, pp. 46–53, 2000.

[6] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. Proc. 43rd IEEE Symposium on Foundations
of Computer Science, pp. 617–626, 2002.

[7] W. Fernandez de la Vega and C. Kenyon. A ran-
domized approximation scheme for metric MAX-
CUT. Proc. 39th IEEE Symposium on Foundations
of Computer Science, pp. 468–471, 1998.

[8] G. Frahling and C. Sohler. Coresets in dynamic
geometric data streams. Proc. 37th Annual ACM
Symposium on Theory of Computing, pp. 209–217,
2005.

[9] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for Maximum Cut and
satisfiability problems using semidefinite program-
ming Journal of the ACM, 42:1115–1145, 1995.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and approxi-
mation. Journal of the ACM, 45(4):653–750, 1998.

[11] L. J. Guibas. Kinetic data structures — a state of
the art report. Proc. 3rd Workshop on the Algorith-
mic Foundations of Robotics, pp. 191–209, 1998.

[12] L. J. Guibas. Modeling motion. In Handbook
of Discrete and Computational Geometry, edited
by J. E. Goodman and J. O’Rourke, 2nd edition,
Chapter 50, pp. 1117–1134, 2004.

[13] S. Har-Peled and S. Mazumdar. Coresets for
k-means and k-medians and their applications.
Proc. 36th Annual ACM Symposium on Theory of
Computing, pp. 291–300, 2004.

[14] S. Har-Peled. Clustering motion. Discrete & Com-
putational Geometry, 31:545–565, 2004.

[15] J. Hershberger. Smooth kinetic maintenance of
clusters. Computational Geometry, Theory and
Applications, 31(1–2):3–30, 2005.

[16] P. Indyk. High-dimensional Computational Geom-
etry. PhD thesis, Stanford, 2000.

[17] H. Kaplan, R. E. Tarjan, and K. Tsioutsioulik-
lis. Faster kinetic heaps and their use in broadcast
scheduling. Proc. 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 834–844,
2001.

	Introduction
	Previous results used by our algorithm
	Kinetic data structures for MaxCut
	Conclusions

