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A disk-covering problem with application in optical interferometry
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Figure 1: A configuration of three pupils (left) and its ACS

(right), the objective is represented by a thick circle.

Abstract

Given a disk O in the plane called the objective, we
want to find n small disks P1, . . . , Pn called the pupils
such that

⋃n

i,j=1
Pi 	 Pj ⊇ O, where 	 denotes the

Minkowski difference operator, while minimizing the
number of pupils, the sum of the radii or the total area
of the pupils. This problem is motivated by the con-
struction of very large telescopes from several smaller
ones by so-called Optical Aperture Synthesis. In this
paper, we provide exact, approximate and heuristic so-
lutions to several variations of the problem.

1 Introduction

The diameter of the pupil of a telescope is propor-
tional to its resolution power. A simple calculus shows
that we would need a telescope having a diameter of
approximately 20m to observe the Earth from a high
orbit [2]. Needless to say, such an instrument would
not be adapted to the observation from space. In or-
der not to build too large pupils, Optical Aperture
Synthesis is adopted to synthesize (very) large pupils
by interferometrically combining several smaller pupils
[1]. The auto-correlation support (ACS) of a system of
pupils denotes its observable spatial frequency domain
(or Fourier domain). When the ACS covers O, we can
synthesize a larger pupil by performing a frequency cut-
off of the auto-correlation function within O.
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Hence the problem can be stated in geometric terms
as follows. Given an objective disk O, design a set of
disks P = {P1, . . . , Pn} such that its ACS D covers
the entire objective while minimizing some cost func-
tion. Here D =

⋃n

i,j=1
(Pi 	 Pj) where 	 denotes the

Minkowski difference operator. The cost function may
include the number of pupils, the sum of the radii or
the total area of the pupils, etc. Denote by ci and ρi

the center and the radius of pupil Pi. Then D can be
written as

⋃n

i,j=1
Dij where Dij is the disk of center

cij = ci − cj and radius ρi + ρj (see Fig. 1).
This problem is a variant of the disk-covering prob-

lem. To the best of our knowledge, the variant we con-
sider is new and the interferometry problem has not
been considered before from a geometric perspective.
This paper is a follow-up of our initial investigation [2].

Our results. We give an exact solution for the case
of three pupils. For the case where the pupils have the
same size, we propose lower and upper bounds of the
number of pupils in order to cover the objective. When
the centers of the pupils are fixed, using Apollonius di-
agrams instead of power diagrams as in [2] we obtain
an algorithm that minimizes the sum of the radii and
provably terminates. Finally, we consider the problem
where the radii of the pupils are known but their posi-
tion is unknown and provide a heuristic algorithm that
works well in practice.

2 Problem with three pupils

A configuration of pupils is called valid if its ACS cov-
ers the objective. In this section, we want to minimize
the sum ρ1 + ρ2 + ρ3 among the valid configurations.
Let l denote the line passing through c23 and c32. Since
the disks in D and the objective are symmetric about
the origin, it suffices to consider only one half-plane
bounded by l.

Lemma 1 Among the valid configurations, those in

which one radius is half of the objective’s radius R and

the other two are zero are optimal.

Proof. We prove by contradiction. It is straightfor-
ward to see that such configurations are valid. Consider
now a configuration in which ρ1 + ρ2 + ρ3 < R/2. We
will prove that it cannot be a valid configuration. In-
deed, suppose w.l.o.g. P1 has the largest radius among
the three pupils. Then D11 is the largest disk among
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Figure 2: A configuration of three pupils and the upper

part of its ACS

D11, D22 and D33 and its radius 2ρ1 is smaller than R.
Let p1, q1, q2, p2 be the intersection points from left to
right of ∂O and ∂D11 with l (see Fig. 2). If segment
p1q1 is covered by D23, then the diameter of D23 is at
least the length of p1q1, i.e., 2(ρ2 +ρ3) ≥ R−2ρ1 which
implies ρ1 + ρ2 + ρ3 ≥ R/2 (a contradiction). The case
where p2q2 is covered by D23 is symmetrical. We can
therefore assume that D23 does not cover p1q1 nor p2q2,
and, by symmetry, the same holds for D32. Without
loss of generality, we can assume that D13 contains p1

or q1 and that D12 contains p2 or q2. We denote by c
the midpoint of the arc p1p2 of ∂O. The distance of c
to p1, q1, p2, q2 is at least

√

R2 + (2ρ1)2 > R. Then c
is not included in neither D12 nor D13 whose diameters
are smaller than R. Neither is it included in D23 and
D32 since the distance from c to c23 and c32 is at least
R and the radii of D23 and D32 are less than R. Hence,
the configuration is not valid. �

Lemma 1 points out that using three pupils is not
better than just using one.

3 An 8
√

2−approximation to the smallest number of

pupils of the same radius

In this section, we restrict to the case ρ1 = . . . = ρn =
ρ/2, then the disks Dij have the same radius ρ. We
want to find an upper bound for n to cover an objective
of radius R. As the number of disks is n2, a lower bound
dR/ρe is easily obtained.

Let p be any prime number, we start by stating a
basic result of linear congruences.

Proposition 2 Let k, l ∈ Z such that gcd(p, k) = 1,
there exists an integer 0 ≤ i < p satisfying ik ≡ l
(mod p).

Theorem 3 {xi − xj | i, j = 0, . . . , 4p − 1} ⊇ {x ∈
Z, |x| < p2} where

xk = kp + (
k(k + 1)

2
mod p)

xk+2p = xk + p,

for k = 0 . . . , 2p− 1.

Proof. Let x be an arbitrary integer between 0 and
p2 − 1, then x can be written as kp + l for some 0 ≤
k, l < p. We now show that x = Xi := xk+i − xi for
some i = 0, . . . , p− 1. Observe that

(k − 1)p < Xi < (k + 1)p, (1)

Xi ≡ X0 + ik (mod p).

By Proposition 2 there exists some 0 ≤ i < p such that
Xi ≡ l (mod p). Hence together with (1) the difference
of either xk+i or xk+i+2p with xi will be x. The only
case where Proposition 2 does not apply is when k = 0.
In this case choose k = 1 instead and easily see that
the set {xi+1−xi+2p}∪ {xi+1+2p−xi+2p} generates all
integers 1, . . . , p− 1 and hence contains x. �

Suppose, w.l.o.g., that ρ = 1√
2

and R = p2 for some

prime p. Let S = {x ∈ Z
2 | ‖x‖∞ < p2}. We see

that the disks of radius 1√
2

whose centers cover S are

sufficient to completely cover the objective. In other
words, we want to find n centers of pupils ci ∈ Z

2 such
that

{ci − cj | 1 ≤ i, j ≤ n} ⊇ S

Corollary 4 d8
√

2R/ρe pupils of radius ρ are sufficient

to cover an objective of radius R.

Proof. The set of pupils is constructed as follows:
ci = (xb i

4p
c, xi mod 4p) for i = 0, . . . , 16p2 − 1. By ap-

plying Theorem 3 first for x-coordinate and then for
y-coordinate, we see that these 16p2 pupils are able to
cover any element of S thus the objective of radius R.
As R = p2 and ρ = 1√

2
, we get the upper bound. �

The following is an immediate consequence of Corol-
lary 4 and the lower bound observed earlier.

Corollary 5 There is an 8
√

2−approximation algo-

rithm to cover the objective with the smallest number

of pupils with all the same given radius.

4 Decision problem

Let us recall that Dij has center cij = ci−cj and radius
ρi + ρj . We work with the Apollonius diagram of the
union of the disks Dij . The (signed) distance of a point
x to circle ∂Dij is defined as

δij(x) = ‖x− (ci − cj)‖ − (ρi + ρj).

The Apollonius cell of Dij consists of the points whose
distance to ∂Dij is no greater than their distance to the
other circles in D:

Aij = {x ∈ R
2 | δij(x) ≤ δi′j′ (x), i′, j′ = 1, . . . , n}.
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Figure 3: A set of three pupils whose ACS does not cover

the objective. The x-marks correspond the vertices of Vij of

which some lie outside the union of the disks.

Lemma 6 The Apollonius cell Aij is included in the

disk centered at cij that contains the set of its vertices.

Proof. See [3]. �

Let Vij denote the subset of the vertices of Aij that
lie inside O plus the intersection points of ∂Aij with ∂O
(see Fig. 3). The following lemma states that to cover
O, it suffices that each Dij contain Vij , for all i and j.
This will be the key idea in our subsequent algorithms.

Lemma 7 O ⊆ D iff Vij ⊆ Dij for all i, j = 1, . . . , n.

Proof. First we argue that O ⊆ D iff Aij ∩ O ⊆ Dij

for all i, j = 1, . . . , n. Since the set of Aij forms a de-
composition of the plane, Aij ∩O ⊆ Dij , i, j = 1, . . . , n,
implies that O ⊆ ⋃n

i,j=1
Dij = D. Conversely, suppose

that O ⊆ D and p ∈ Aij ∩O, we will show that p ∈ Dij .
Indeed, p ∈ O ⊆ D implies δD(p) ≤ 0. Together with
p ∈ Aij , we conclude δij(p) = δD(p) ≤ 0 which implies
that p is inside Dij .

We show next that Aij ∩ O ⊆ Dij is equivalent to
Vij ⊆ Dij by proving that a disk ∆ centered at cij cov-
ering Vij covers also Aij ∩O. We first observe that the
edges of Aij with both endpoints in O are covered by
∆ by Lemma 6. It remains to verify that the intersec-
tion points of ∂Aij with ∂O and the arcs linking them
are also in ∆. Consider two such points p and q con-
secutive along the boundary of O. Call p1p2 and q1q2

the two Apollonius edges that intersect ∂O at p and q
respectively. Suppose p1, q1 ∈ O and p2, q2 /∈ O, which
implies that p1, p, q, q1 belong to Vij . Since p1 and p lie
on edge p1p2, and q and q1 are contained in q1q2, ∆ will
cover the arcs p1p and qq1 by Lemma 6. It thus remains
to show that the circular arc pq of O is included in ∆,
which is true since p, q ∈ Dij whose radius has been
assumed to be smaller than the radius of O. �

5 Minimizing the sum of the radii of the pupils

In this section the pupil centers are fixed and we con-
sider the problem of optimizing the sum of the radii of
the pupils.

We start with an initial configuration and compute
the sets Vij . Let ρij be the smallest radius for Dij to
cover Vij . If we change the radii of the pupils so that
the radius of each Dij is at least ρij then the objective
is covered according to Lemma 7. We hence need to
solve the following linear program. See [2] for additional
linear constraints.

min

n
∑

i=1

ρ′i

s.t. ρ′i + ρ′j ≥ ρij , i, j = 1, . . . , n (∗)
ρ′i ≥ 0, i = 1, . . . , n.

We may iterate the above steps until the sum of the
radii converges. Observe that the Apollonius diagram
of the disks needs to be updated at each iteration since
the pupils’ radii change.

Algorithm 1 Minimize the sum of the pupils’ radii

1: ε← any small positive constant
2: repeat

3: construct the Apollonius diagram of D
4: compute Vij and ρij

5: compute {ρ′
i}1≤i≤n by solving linear program (*)

6: err ←∑n

i=1
ρi −

∑n

i=1
ρ′i

7: ρi ← ρ′i, i = 1, . . . , n
8: until err < ε except for the first iteration
9: return {ρ′

i}1≤i≤n

Lemma 8 Algorithm 1 always terminates.

Proof. The initial Vij is included in D
′

ij by the con-
struction of αij . According to Lemma 7, O is covered
by

⋃

ij Dij after the first iteration. Hence, we may as-
sume that the objective is covered. In this case, no αij is
positive which shows that, at each step, ρ′

i +ρ′j ≤ ρi+ρj

and hence
∑n

i=1
ρ′i ≤

∑n

i=1
ρi. Since

∑n

i=1
ρ′i is positive,

Algorithm 1 necessarily terminates after a finite number
of iterations. �

Algorithm 1 has been implemented and appears to work
well in practice. Fig. 4 compares the results of Algo-
rithms 1 with the optimal solution computed by the
exhaustive search method (see [3]).

6 Fixed-radius problem

In this section, we fix the radii and propose a heuristic
algorithm for moving the set of pupils in order that its
ACS covers O. Our algorithm works as follows. We
begin with a given configuration of pupils and compute
the sets Vij . Desiring that each Dij should contain Vij
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Figure 4: Initial configuration of 5 pupils (a). Results after

applying Algorithm 1 (b) and the exhaustive search algo-

rithm (c). The total areas of the pupils in (a) and (b) are

35.657 and 19.842 respectively. The optimal solution must

be at least 19.572 as computed by the exhaustive algorithm.

The area of the pupils in (d) is only 16.480 when we move

the pupils by the algorithm described in Section 6 and then

apply Algorithm 1.

for all i and j, we minimize the sum of the squared
distance of the centers of Dij to the points in Vij .

min

n
∑

i,j=1

∑

v∈Vij

‖(c′i − c′j)− v‖2

Here centers c′i of the pupils are variables and we recall
that c′i − c′j would become the center of disk D′

ij . The
objective function being the sum of convex functions,
is thus convex. We can update the sets Vij and iterate
the algorithm until we obtain the desired result. Our
algorithm most of the time provides a valid solution if
one exists, irrespectively of the initial configuration of
pupils (see Figs. 5 and 6). The algorithm can also be
used as a preprocessing step to improve Algorithm 1
(see Fig. 4d).

Figure 5: Left: A configuration of 5 pupils whose centers

are initially placed about a line. b) Right: Dotted curves

illustrate the movements of the pupils after iterating 24 times

the algorithm until the union of the disks covers O.

Figure 6: Left: A configuration of 9 pupils Right: Result

obtained by iterating 9 times the algorithm.

References

[1] P. Blanc, F. Falzon, and E. Thomas. A new concept of
synthetic aperture instrument for high resolution earth
observation from high orbits. In Disruption in Space,
Marseille, France, 2005.

[2] T. Nguyen, J.-D. Boissonnat, P. Blanc, F. Falzon, and
E. Thomas. Pupil configuration for extended source
imaging with optical interferometry: A computational
geometry approach. In Proc. IEEE Int. Conf. on Acoust.,
Speech and Sig. Proc., volume 2, pages 793–796, 2006.

[3] T. Nguyen, J.-D. Boissonnat, F. Falzon, and C. Knauer.
A disk-covering problem with application in optical in-
terferometry. In arXiv:cs/0612026v1.


