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Exact and approximate Geometric Pattern Matching for point sets in the

plane under similarity transformations ∗

Dror Aiger† Klara Kedem‡

Abstract

We consider the following geometric pattern matching
problem: Given two sets of points in the plane, P and Q,
and some δ > 0, find a similarity transformation (trans-
lation, rotation and scale) such that h(T (P ), Q) < δ,
where h(., .) is the directional Hausdorff distance with
L∞ as the underlying metric. Similarity transforma-
tions have not been dealt with in the context of the di-
rectional Hausdorff distance and we fill the gap here. We
present efficient, exact and approximate algorithms for
this problem imposing a reasonable separation restric-
tion on the set Q. For the exact case if the minimum
L∞ distance between every pair of points in Q is 8δ then
the problem can be solved in O(n2m log n) time where m
and n are the number of points in P and Q respectively.
If the points in Q are just cδ apart from each other
for any 0 < c < 1 we get a randomized approximate
solution with expected runtime O(n2c−4ε−8 log4 mn),
where ε > 0 controls the approximation and the answer
is correct with high probability.

1 Introduction

A central problem in pattern recognition, computer vi-
sion, and robotics, is the question of whether two point
sets P and Q in the plane resemble each other. The
Hausdorff distance (HD) between two point sets P and
Q is defined as

H(P, Q) = max(h(P, Q), h(Q, P ))

where h(P, Q) is the directional Hausdorff distance from
P to Q:

h(P, Q) = max
p∈P

min
q∈Q

d(p, q).

Here, d(·, ·) represents a more familiar metric on points;
for instance, the standard Euclidean metric (L2) or the
L∞ metric.

Algorithms for solving exactly the minimum HD un-
der rigid transformations have high computation time.
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The best known algorithm for rigid transformations was
given by Chew et al. [4], requiring O(m3n2 log2 mn)
time (for the directional HD and under L2). To over-
come the high complexity of exact algorithms, approxi-
mation schemes were considered by several authors.

Goodrich, Mitchell and Orletsky[6] approximate the
minimum HD under rigid motion by approximating the
transformation. They show that there is a discrete rigid
transformation T such that h(T (P ), Q) ≤ 4δ∗ where
δ∗ is the minimum directional HD between P and Q.
Their algorithm runs in time O(n2m log n). Some pa-
pers consider just the decision version of the directional
HD problem: Given δ > 0, and point sets P and Q,
where |P | < |Q|, and let G be the group of rigid trans-
formations, find a transformation T ∈ G for which
h(T (P ), Q) ≤ δ. Approximate algorithms for this prob-
lem under rigid transformations can be found in [2, 5].
A more detailed survey on approximate algorithms for
this problem will be given in extended version of this
paper.

In this paper we consider the decision version of the
directional HD problem in the plane under similarity
transformations and L∞. We contribute in this pa-
per the first attempt to work on the directional HD
under similarity transformation (translation, rotation
and scale) providing exact and guaranteed approximate
methods. Throughout the paper we assume that the
scale parameter is constrained to be above a minimum
value (to avoid the trivial points in the pattern col-
lapse to a single point). We show that if we require
that the points in Q obey some separation restrictions
(minimum pairwise L∞ distance) it is possible to solve
this problem efficiently. When the separation is 8δ we
present an algorithm that solves the problem exactly, in
O(n2m logn) time. For separation cδ for any 0 < c < 1
we present a randomized algorithm for an approximate
solution.

2 Preliminaries

Definition 1 A point set Q in the plane is called δ-
separated if the minimum distance under L∞ between
any pair of points in Q is greater than δ.

Definition 2 We define the δ-neighborhood of a point q
in the plane to be all the points in R2 that are in distance
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≤ δ from q. For L∞ in the plane this is a square of side
size 2δ.

Definition 3 Given a set S of objects in Rd and a point
q ∈ Rd, we define the depth of q in S, depth(q,S), to
be the number of objects of S containing q. The depth
of S, depth(S), is defined as maxqdepth(q,S) over all
q ∈ Rd.

We assume that the set S is well behaved in the sense
that it induces on Rd an arrangement of complexity

O(|S|
O(d)

). Let Π(S) be the locus of points realizing
depth(S).

Lemma 1 [1] Let S be a set of n objects, with ∆ =
depth(S). Let ε, 0 < ε < 1, be fixed. Let c > 0
be a sufficiently large constant. Let k be an integer,
with k ≥ ∆/4. Let R ⊂ S be a random subset formed
by picking each object with probability ρ = ρ(ε, k) =
min(ck−1ε−2 log n, 1), independently. Then, for an ap-
propriate choice of c, we have:

(i) If ∆ ≥ 2k, then for every v ∈ Π(R) with high proba-
bility depth(v,S) ≥ (1 − ε)∆ and therefore depth(R) ≥
2(1 − ε) · kρ.

(ii) If ∆ ≤ k, then with high probability depth(R) ≤ (1+
ε) · kρ.

3 The matching problem

Our goal is to find a similarity transformation T that
brings every point in P to the δ-neighborhood of Q. We
use the linear parametrization of similarity transforma-
tion where (x′, y′) = T (x, y):

x
′

= ax + by + c (1)

y
′

= −bx + ay + d (2)

where a = s cos(θ), b = s sin(θ), s is the scale and
θ is the rotation, and (c, d) is the translation vector.
We describe the similarity transformation as the vector
(a, b, c, d) in R4. Consider the set of similarity trans-
formations that bring a point p in P exactly to a point
q ∈ Q. The transformations that correspond to Equa-
tion 1 describe a hyperplane in R4 parallel to the d-axis.
The transformations that correspond to Equation 2 de-
scribe a hyperplane in R4 parallel to the c-axis. The
set of transformations that bring p to q is thus a 2-flat
which is the intersection of the two hyperplanes. Based
on the parametrization as above we define a δ-stick in
the transformation space:

Definition 4 Let Rδ be a square of side size 2δ in the
(c, d) plane centered at (c, d) = (0, 0). A δ-stick is the
polytope in R4 determined by the Minkowski sum of Rδ

with a 2-flat.

p1

p2

q1

q2

P Q

Figure 1: The point set P is on the left. The squares on
the right are the δ-neighborhoods of the points in Q and
the |P | convex regions on the right are the mappings of
all the points in P by the transformations in Σ as defined
in Lemma 3. The regions of the mappings of p1 and p2

are exactly the δ-neighborhoods of q1 and q2.

We will also need this variant:

Definition 5 Let r be a rectangle in the (c, d) plane
centered at (c, d) = (0, 0). r-stick is the polytope in R4

determined by the Minkowski sum of r with a 2-flat.

Lemma 2 The set of all similarity transformations
that bring p to the δ-neighborhood of q is a δ-stick in
transformation space.

Proof omitted from this extended abstract.
The same holds for r-sticks.

Lemma 3 Let p1 and p2 be the points that determine
the diameter of P and let q1 and q2 be two points in Q.
Let Σ be the set of all similarity transformations that
map p1 to the δ-neighborhood of q1, and p2 to the δ-
neighborhood of q2. Denote by R(Σ, p) the region in the
(spatial) plane, formed by transforming a point p ∈ P
by all the transformations in Σ, then R(Σ, p) is convex
and is bounded by a square of size 6δ (see Figure 1).

Proof omitted from this extended abstract.

Corollary 4 Let Q be a set of cδ-separable points and
let R be a region in the plane as specified in Lemma 3.
Then the number of δ-neighborhoods of Q points whose
intersection with R is not-empty is bounded by a con-
stant.

For P = {p1, .., pm} and Q = {q1, .., qn} we have mn
δ-sticks which we denote by

S =









s11 .. s1n

. . .

. . .
sm1 .. smn
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where sij is the δ-stick that brings pi to the δ-
neighborhood of qj . Let p1 and p2 be the points that
determine the diameter of P and let uij = s1i ∩ s2j for
some 1 ≤ i 6= j ≤ n. We will prove that the transforma-
tion we seek must be contained in some uij . For finding
it we will compute the maximum depth in each uij .

The next theorem describes our algorithm and proves
its runtime.

Theorem 5 Given two point sets P and Q in the plane,
δ > 0, and a bound on the minimum scale. If Q is 8δ-
separated (under L∞) one can determine a similarity
transformation T , if such exists, such that h(T (P ), Q) <
δ. If such a transformation does not exist, then the algo-
rithm returns ‘false’. The running time of the algorithm
is O(n2m log n).

Proof. Find the points p1 and p2 that determine the
diameter of P . Let qi and qj be any two points in Q,
1 ≤ i 6= j ≤ n. Recall that uij is a convex polytope
in R4 corresponding to all similarity transformations
that map p1 and p2 to the δ-neighborhoods of qi and
qj respectively. By lemma 3, for any p in P , the region
R(uij , p) in the plane is bounded by a square of size 6δ,
and since we require in this Theorem a separation of 8δ,
there is at most one point from Q whose δ-neighborhood
intersects R(uij , p). Therefore uij is intersected by at
most m δ-sticks in R4 (one for mapping each point of
P to the only point of Q in its region). For each point
p ∈ P (p 6= p1 and p2) we find the only point q ∈ Q (if
exists) that is closest to T (p) where T is the transforma-
tion that brings p1 and p2 exactly to q1 and q2. Applying
linear programming on all these m δ-sticks we answer
‘false’ if the linear programming returns infeasible, oth-
erwise we know that there exists a transformation that
maps all points of P to the δ-neighborhoods of points
of Q.

As for the running time, finding the diameter of P can
be done in time O(m log m). We have to solve O(n2)
sub problems, one for each choice of qi and qj . In each of
them we query the nearest neighbor from Q in the plane
and solve a linear program. We first construct a Voronoi
diagram of the points in Q so nearest neighbor query
can be performed efficiently. This takes O(n log n) time.
Then each of the m nearest neighbor queries is done in
logarithmic time via point location. The linear pro-
gramming is solved in linear time[9] for all the O(m)
δ-sticks defined by the reported points. Thus the over-
all time is O(n2(m log n + m) = O(n2m log n). �

For the randomized approximate algorithm we first
prove the following Lemma:

Lemma 6 Let M be a subset of δ-sticks from S of size
O(n). Then one can report all intersections between M
and uij for all 1 ≤ i 6= j ≤ n in time O(n2 log n + K)
where K is the number of reported intersections.

s1i

s2j

r

uij

Spatial space (the plane)

q

qj

qi

The region p1 is mapped to by s1i

p

p2

p1

The region p2 is mapped to by ρ1j

The region p is mapped to by r

R(ρ1j, p2)

Transformation space (δ-sticks in R4)

Figure 2: The transformation space is on the left. The
spatial space is on the right. The non-empty inter-
section of the δ-neighborhood of qj with the region
R(ρ1j , p2) means that r intersects the gray area ui,j.

Proof omitted from this extended abstract.
We now state and prove the second theorem of this

paper for randomized approximation when Q is just cδ-
separated for any 0 < c < 1:

Theorem 7 Given two point sets P and Q in R2 of
m and n points respectively, where Q is cδ-separated,
0 < c < 1, and 0 < ε < 1, δ > 0. If there exists
a similarity transformation T that brings all points in
P to the δ-neighborhoods of points in Q, one can de-
termine a similarity transformation T ′ such that there
exists a subset B of P , for which |B| ≥ (1 − ε)|P | and
h(T ′(B), Q) < δ. If no such T exists the algorithm ei-
ther finds T ′ as above or returns ‘false’. The expected
running time is O(n2c−4ε−8 log4 mn) and the result is
correct with high probability.

Proof. Recall the matrix S of δ-sticks above. Here we
have to slightly change the setup. Since the points in
Q are just cδ-separated, their δ-neighborhoods can be
overlapping and so the δ-sticks above. However, we can
decompose the set of n squares to a set X of O(n) rect-
angles disjoint in their interiors in O(n) time as in [3].
Thus the matrix S now contains O(mn) r−sticks (as
in Definition 5) built from rectangles in X instead of
squares. Their longest side is smaller than δ and they
do not intersect each other. Let us call the new point
set constructed from all the centers of the rectangles in
Q, Q′. Our original problem is now transformed to the
problem of bringing the set P to the union of all rectan-
gles in X and each point in the new set Q′ is a center of
some rectangle in X . Note that the number of columns
of the matrix S is now changed but it is still O(n).

All the r-sticks in one row of S (which corresponds to
a single point in p) do not intersect each other from the
construction above. Let p1 and p2 be the points that
determine the diameter of P and let U = {uij} be the
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set of polytopes that are the intersection of all pairs of
r-sticks, one corresponding to p1 and the other to p2.
Each uij is the set of all transformations that bring p1

and p2 to the rectangles that correspond to qi and qj

for some 1 ≤ i, j ≤ |Q′|. If there exists a transformation
T such that h(T (P ), Q) < δ it must be inside one of
the uij ‘s since in particular it brings p1 and p2 to the
neighborhoods of qi and qj , respectively. It follows that
we only have to search for T within one of the uij ‘s.
The existence of such a T is equivalent to the existence
of a point in R4 of depth m in the arrangement A(S) of
S.

By Lemma 1 we can approximate depth(S) using ran-
dom sampling. As follows from the Lemma, we sam-
ple randomly R from S by selecting randomly each r-
stick in S for k = m/2 (see the lemma), then for a
point r which realizes the maximum depth in A(R),
depth(r,S) ≥ (1− ε)depth(S). It follows that it suffices
to find depth(R) and by the above argument it suffices
to find depth(R∩U). By corollary 4 each uij intersects
at most O(m) r-sticks in S (its size is bounded by δ),
and since we select each r-stick in S with probability
c1(m/2)−1ε−2 log mn for some constant c1, the size of
the set of r-sticks in R intersecting uij for some i, j is
O(ε−2 log mn) with high probability.

The expected size of R is O(nε−2 log mn), thus,
by Lemma 6, we can find these intersections in time
O(|R|2 log |R| + K) where K = O(n2ε−2 log mn). For
the computation of the maximum depth in each uij

we simply construct the arrangement of all the r-sticks
that intersect it in time O(ε−8 log4 mn) and take the
maximum depth resulting from computing for all uij .
The point in R4 that realizes depth(R) has the approx-
imated depth in S as claimed. This point in trans-
formation space is the desired transformation T ′. As
for the running time, we are now working with the
set Q′ whose size depends on the parameter c. We
have |Q′| = O(c−2|Q|) so we have O(n2c−4) sub prob-
lems, each one corresponding to the computation of the
maximum depth in the arrangement of O(ε−2 log mn)
polytopes in R4. The depth is computed by con-
structing the whole arrangement in R4 and thus takes
O(ε−8 log4 mn) time. In total, all the subproblems take
expected time O(n2c−4ε−8 log4 mn). Note that if there
is no transformation that brings all points in P to the
δ-neighborhoods of points Q, finding the approximate
transformation T ′ is not guaranteed.

�

4 Conclusions

We showed that for the pattern matching problem for
point sets P and Q in the plane, if we apply rea-
sonable separability restrictions on Q, we can get ef-
ficient algorithms. For 8δ-separated we showed an ex-

act algorithm with running time O(n2m logn). For cδ-
separated (0 < c < 1) we can approximate the solution
in quadratic time in n.
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