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Approximate Shortest Descent Path on a Terrain
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Abstract

A path from a point s to a point t on the surface of a
polyhedral terrain is said to be descent if for every pair
of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q))
on the path, if dist(s, p) < dist(s, q) then z(p) ≥ z(q),
where dist(s, p) denotes the distance of p from s along
the aforesaid path. Although an efficient algorithm to
decide if there is a descending path between two points
is known for more than a decade, no efficient algorithm
is yet known to find a shortest descending path from s
to t in a polyhedral terrain. In this paper we propose an
(1 + ε)-approximation algorithm running in polynomial
time for the same.

1 Introduction

The problem of finding descending paths in a polyhedral
terrain was first studied by Berg and Kreveld [4]. They
presented an O(n log n) time algorithm to decide if there
is a descending path between two points where n is the
number of faces of the triangulated terrain. Roy et al.
[6] presented an O(n2 log n) time algorithm to compute
a shortest descending path (SDP) in a convex terrain,
and an O(n log n) time algorithm to compute an SDP
through a sequence of parallel edges. Recently, Ahmed
and Lubiw [1] have proposed an (1 + ε)-approximation
algorithm for SDP over a given face sequence using con-
vex optimization techniques. The running time of their
algorithm is O(n3.5 log( 1

ε )). Motivation for studying
this problem is discussed in [1, 4, 6].

In this paper we propose an (1 + ε)-approximation
algorithm for SDP in a polyhedral terrain. The time
complexity of our proposed algorithm is O(mn log mn+
nm2) time, where n is the number of faces of the tri-
angulated terrain and m is approximately O(n

ε log 1
ε )

ignoring the geometric parameters (see Claim 2). Thus
we are able to provide the first polynomial time approxi-
mation algorithm for the open question raised in [4]. We
make use of the discretization method of Aleksandrov
et al. [3] that was used to solve the shortest path prob-
lem in a weighted terrain. The method involves insert-
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ing Steiner points on the edges of the terrain and then
constructing an edge weighted graph G. Finally, the
problem boils down to finding a shortest path between
two points in G.

One of the reviewers of this paper has pointed out
a very recent technical report [2] by Ahmed and Lu-
biw that proposes an (1 + ε)-approximation algorithm
for SDP in a polyhedral terrain. It discretizes the
terrain with O(n2 X

ε ) Steiner points so that after an
O(n2 X

ε log(nX
ε ))-time preprocessing phase for a given

vertex s, it can report an (1+ε)-approximate path from
s to any point v in O(n) time if v is either a vertex of
a terrain or a Steiner point, and in O(nX

ε ) time oth-
erwise. Note that X = L

h sec θ, where L is the length
of the longest edge, h is the smallest distance of a ver-
tex from a non-adjacent edge in the same face, and θ is
the largest acute angle between a non-level edge and a
perpendicular line.

2 Preliminaries

A terrain T is a polyhedral surface in IR3 with a special
property: the vertical line at any point on the xy-plane
intersects the surface of T at most once. Thus, the pro-
jections of all the faces of a terrain on the xy-plane are
mutually non-intersecting at their interior. Each vertex
p of the terrain is specified by a triple (x(p), y(p), z(p)).
Without loss of generality, we assume that all the faces
of T are triangles, and the source s and destination t
are the vertices of the terrain. Our aim is to find an
(1 + ε)-approximate SDP in T from s to t. Our algo-
rithm works in three phases.

Phase 1: In the first phase, we find out the descent
flow region for the source s using the method that was
described in [6]. Given an arbitrary point p on the sur-
face of the terrain T , the descent flow region of p (called
DFR(p)) is the region on the surface of T such that each
point q ∈ DFR(p) is reachable from p through a descent
path. Then we check whether t lies inside DFR(s) is
true. If the answer is negative, then descent path from
s to t does not exist. If the answer is positive, then we
proceed to phase 2. Note that, like T , DFR(s) is also
triangulated.

Phase 2: In this phase we use a method similar to
the one that was employed by Aleksandrov et al. [3]
and construct a graph G. We deviate from [3] on two
accounts: We insert two sets of Steiner points on the
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edges of the T instead of one. Of these two sets, the
first set of Steiner points is same as that of [3]. The sec-
ond difference is that, unlike in [3], the graph edges are
directed. We discuss these details in the next section.

Phase 3: We use Dijkstra’s algorithm [5] using Fi-
bonacci heaps to find the shortest path between s and
t in the directed graph G. We later show that this path
is, in fact, an (1 + ε)-approximation to SDP.

3 Graph G

3.1 Steiner Points Insertion

We insert two different sets of Steiner points on the
edges of the DFR(s).

ε-Steiner-points: This set of Steiner points is the same
as that of [3]. Let v be a vertex of DFR(s). Define hv

to be the minimum distance from v to the boundary of
the union of its incident faces. Let rv = εhv for some
ε > 0.

For each vertex v of face fi, do the following: Let
eq and ep be the edges of fi incident to v. First, place
Steiner points on the edges eq and ep at distance rv

from v; call them q1 and p1, respectively. By definition,
|vq1| = |vp1| = rv. Let θv be the angle between ep and
eq. Define

δ =

{
(1 + ε. sin θv) if θv < π

2 ,

δ = (1 + ε) otherwise.

Figure 1: ε-Steiner Points

We now add Steiner points q2, q3, . . . , qµq−1 along
eq such that |vqj | = rvδj−1 where µq = dlogδ(

|eq|
rv

)e.
Similarly, add Steiner p2, p3, . . . , pµp−1 along ep where
µp = dlogδ(

|ep|
rv

)e. See Figure 1.
Define dist(a, e) as the minimum distance from a

point a to an edge e. This segment from a to e will
be perpendicular to e.

Claim 1 (3.11 of [3]) |qiqi+1| ≤ ε.dist(q, ep) and
pjpj+1 ≤ ε.dist(p, eq) where 0 < i < µq, 0 < j < µp,
q ∈ qiqi+1 and p ∈ pjpj+1.

Isohypse-Steiner-points: Let p1, p2, . . . , pµq
be the

set of ε-Steiner-points on some edge ep. For any non-
horizontal edge (An edge e is horizontal if for any two
points a and b on the edge e, z(a) = z(b)) ej(6= ei) add
an Isohypse-Steiner-point dpi on edge ej if z(dpi) =
z(pi). So, if there is no point on edge ej such that
z(dpi) = z(pi), then no Isohypse-Steiner-point is in-
serted. Intuitively, we take a horizontal plane at each
Steiner point and intersect it with the terrain. At
each intersection of the plane and an edge of terrain
we insert a Steiner point. Note that, the insertion of
Isohypse-Steiner-point may increase the total number
of ε-Steiner-points by at most a factor of n.

3.2 Graph Construction

Figure 2: Approximation of SDP

For each face fi we treat all the ε-Steiner-points,
Isohypse-Steiner-points and the vertices of the DFR(s)
as the node of graph Gi. Two vertices a and b of Gi

are connected by a directed edge eab if a and b lie on
two different edges of face fi and z(a) ≥ z(b). The
weight of each edge is the Euclidean distance between a
and b. Now we define an edge weighted directed graph
G = G1 ∪G2 ∪ . . . ∪Gn.

Claim 2 At most m = O(n logδ(
|L|
r )) Steiner points

are added to each edge of fi, for 1 ≤ i ≤ n, and where
|L| is the length of the longest edge in DFR(s) and r is
the minimum among the rv.

Claim 3 G has O(n2 logδ(
|L|
r )) vertices and

O(n3 log2
δ(
|L|
r )) edges.

4 Proof of Approximation Factor

Let π(s, t) = [s, o1, o2, . . . , om, t] be the shortest mono-
tone descent path and it passes through the edge se-
quence e1, e2, . . . , em. Then in each edge ei the path
π(s, t) must pass through a pair of Steiner-points which
are closest to oi, say ui and bi (See Figure 2) such that
z(ui) ≥ z(oi) ≥ z(bi). Note that, in degenerate case
point ui may be oi and oi may coincide with bi. Let us
consider the path π∗(s, t) = [s, u1, u2, . . . , um, t].
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Lemma 4 π∗(s, t) is monotone descent.

Figure 3: Illustration of Lemma 5 and Corollary 6

To prove the above Lemma we need to prove the follow-
ing statement.

Lemma 5 Let p and q be two points on two consecutive
members ei and ei+1 of E which bounds a face f , and
z(p) = z(q). Now, if a line ` on face f intersects both ei

and ei+1, and is parallel to the line segment [p, q], then
all the points on ` have the same z-coordinate.

Proof. Consider a horizontal plane h at altitude z(p).
The intersection of the face f and the plane h is the
line segment [p, q]. Consider another horizontal plane h′

through a point r on line `. The intersection of f and
h′ must be line parallel to [p, q], and hence it coincides
with the line `. Thus, all the points on the line ` have
the same z-coordinate. ¤

From the above Lemma, we get the following Corollary.

Corollary 6 If [p, q] makes an angle θ with ei (in anti-
clockwise direction see Figure 3) and [v, w] (v ∈ ei and
w ∈ ei+1) be the line segment that makes an angle β
with ei (in anticlockwise direction). Now

1. θ = β iff z(v) = z(w),

2. θ > β iff z(v) > z(w), and

3. θ < β iff z(v) < z(w).

Figure 4: Proof of Lemma 4

Now we have to prove that the path π∗(s, t) is mono-
tone descent. Without loss of generality we can say that

z(s) ≥ z(u1). We will prove this using contradiction. So
the path from s to u1 is monotone descent. Let us con-
sider that path s to uk−1 along π′(s, t) is monotone de-
scent and the path segment uk−1 to uk is not monotone
descent. Then z(uk−1) < z(uk). Again the path seg-
ment ok−1 to ok is monotone descent and z(uk) > z(ok)
(As z(uk) > z(bk)). So there is a Isohypse-Steiner-point
duk ∈ [uk, ok] (by Lemma 5 and Corollary 6 see Figure
4) such that path from s to duk is monotone descent.
This contradicts the assumption that uk is closet to ok.

From the above discussion, we can conclude that the
path π∗(s, t) is monotone descent. Hence Lemma 4 fol-
lows.

Lemma 7 |π∗(s, t)| ≤ (1 + 2ε)|π(s, t)|, where |π(a, b)|
implies the length of the path π(a, b).

Proof. We have

|π∗(s, t)| = |su1|+ |u1u2|+ |u2u3|+ . . . +
+|um−1um|+ |umt|

≤ |so1|+ |o1u1|+ |u1o1|+ |o1o2|+
+|o2u2|+ |u2o2|+ |o2o3|+
+|o3u3|+ |u3o3|+ . . . + |om−1um−1|
+|om−1om|+ |omum|+ |umom|+ |omt|

= |so1|+ |o1o2|+ |o2o3|+ . . . +
+|om−1om|+ |omt|+
+2{|o1u1|+ |o2u2|+ . . . + |umom|}

≤ |so1|+ |o1o2|+ |o2o3|+ . . . +
+|om−1om|+ |omt|+
+2ε{|o1o2|+ |o2o3|+ . . . + |om−1om|}
(using Claim 1, Lemma 5 and Corollary 6)

≤ (1 + 2ε)π(s, t).

¤

From the above Lemma we can conclude that there
exists a path π∗(s, t) such that |π∗(s, t)| = (1 +
2ε)|π(s, t)|. Dijkstra’s algorithm may output a mono-
tone descent path π∗∗(s, t) which may be a different
path from π∗(s, t). As Dijkstra’s algorithm outputs a
path of shortest length in graph G, we have |π∗(s, t)| ≥
|π∗∗(s, t)|. So, we can conclude the following theorem.

Theorem 8 Let 0 < ε < 1
2 . Let DFR(s) be a terrain

with n faces and let s and t be two of its vertices. An ap-
proximation π′(s, t) of a shortest monotone path π(s, t)
can be computed such that π′(s, t) ≤ (1+2ε)π(s, t). The
approximation can be computed in O(mn log mn+nm2)
time where m = O(n logδ(

|L|
r )) and δ = (1 + εsinθ) (by

virtue of Claim 3), when θ, L, r denote the smallest an-
gle among the triangles, the length of the longest edge,
and the length of smallest rv, respectively.
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Proof. The approximation factor follows from Lemma
7. The running time of the algorithm is same as that of
single source shortest path algorithm on a graph with
O(n2 logδ(

|L|
r )) vertices and O(n3 log2

δ(
|L|
r )) edges. ¤
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