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Abstract

A path from a point s to a point t on the surface of a polyhedral terrain is said to be
descent if for every pair of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the path,
if dist(s, p) < dist(s, q) then z(p) ≥ z(q), where dist(s, p) denotes the distance of p from s

along the aforesaid path. Although an efficient algorithm to decide if there is a descending
path between two points is known for more than a decade, no efficient algorithm is yet known
to find a shortest descending. In this paper we propose an (1 + ǫ)-approximation algorithm
running in polynomial time for the same.

1 Introduction

The problem of finding descending paths in a polyhedral terrain was first studied by de Berg and
van Kreveld [5]. They presented an O(n log n) time algorithm to decide if there is a descending
path between two points where n is the number of faces of the triangulated terrain. Roy et al. [7]
presented an O(n2 log n) time algorithm to compute a shortest descending path (SDP) in a convex
terrain, and an O(n log n) time algorithm to compute a SDP through a sequence of parallel edges.
Recently, Ahmed and Lubiw [1] have proposed an (1 + ǫ)-approximation algorithm for computing
a SDP over a given face sequence using convex optimization techniques. The running time of their
algorithm is O(n3.5 log(1

ǫ
)). Motivation for studying this problem is discussed in [1, 5, 7].

In this paper we propose an (1+ǫ)-approximation algorithm for computing a SDP in a polyhedral
terrain. We make use of the discretization method of Aleksandrov et al. [3] that was used to solve
the shortest path problem in a weighted terrain. The method involves inserting Steiner points on
the edges of the terrain and then constructing an edge weighted graph G. Finally, the problem
boils down to finding a shortest path between two points in G. We propose two algorithms for
SDP problem. The first one uses Dijkstra’s algorithm [6] to compute shortest paths and runs in
O(|V | log |V | + |E|) time; the second one uses Bushwhack algorithm [8] and runs in O(|V | log |V |)

time, where |V | = O(n2 logδ(
n|L|

r
)) and |E| = O(n3 log2

δ(
n|L|

r
)). Here δ = (1 + ǫsinθ) and θ, L, r

denote the smallest angle among the triangles, the length of the longest edge, and the length of
smallest rv, respectively (see Claim 3 for more details).

Recently, Ahmed and Lubiw [2] have proposed an (1+ ǫ)-approximation algorithm for computing
SDP in a polyhedral terrain. It discretizes the terrain with O(n2 X

ǫ
) Steiner points so that after
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an O(n2 X
ǫ

log(nX
ǫ

))-time preprocessing phase for a given vertex s, they can report an (1 + ǫ)-
approximate path from s to any point v in O(n) time if v is either a vertex of a terrain or a Steiner
point, and in O(nX

ǫ
) time, otherwise. The quantity X = L

h
sec θ, where L is the length of the longest

edge, h is the smallest distance of a vertex from a non-adjacent edge in the same face, and θ is the
largest acute angle between a non-level edge and a perpendicular line [2].

2 Preliminaries

A terrain T is a polyhedral surface in IR3 with a special property: the vertical line at any point on
the xy-plane intersects the surface of T at most once. Thus, the projections of all the faces of a
terrain on the xy-plane are mutually non-intersecting at their interior. Each vertex p of the terrain
is specified by a triple (x(p), y(p), z(p)). Without loss of generality, we assume that all the faces of
T are triangles, and the source s and destination t are the vertices of the terrain. Our aim is to
find an (1 + ǫ)-approximate SDP in T from s to t.

Let v be vertex of T . Let hv be the minimum distance to the opposite boundary of the adjacent
faces a v. Define a polygonal cap Cv, called a sphere around v, as follows. Let rv = ǫhv and
r′v = ǫhv

n
for some ǫ > 0. Let r′ be the minimum among the r′v over all v. Let uvw be a triangular

face incident to v and v′ (w′) be at the distance r′v from v on edge the uv (wv). Then u′vw′ is a
triangular sub-face inside uvw. The sphere Cv around v contains all such subface incident at v.

Property 1 [3] Let va and vb two vertices of the terrain T . The geodesic distance between any two
spheres Cva

and Cvb
is greater than (1 − 2ǫ)hva

.
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Figure 1: The Bushwack Algorithm

The Bushwhack algorithm, proposed by Sun and Reif [8], computes a shortest path in the geo-
metric graph defined over Steiner points in a terrain. It explores geometric properties of the paths in
such graphs to attain an O(|V | log |V |) running time, instead of O(|V | log |V |+ |E|) as in Dijkstra’s
single source shortest path algorithm. Here V and E refers to vertices and edges of the underlying
graph, respectively. The Bushwhack algorithm uses the following simple property of shortest paths



on the terrains: Let p1 and p2 are two shortest paths. The paths p1 and p2 do not intersect each
other at an interior point of any face.

Therefore, for any two consecutive Steiner points a1 and a2 on an edge e for which the distance
from s are already known, the corresponding sets of possible next nodes on the path are disjoint
(see Figure 1). This enable us to consider only a subset of links at a Steiner point u when expanding
the shortest path tree from u.

3 Roadmap of our algorithm

Our algorithm works in three phases.

Phase 1: In the first phase, we find out the descent flow region for the source s using the method
that was described in [7]. Given an arbitrary point p on the surface of the terrain T , the descent
flow region of p (called DFR(p)) is the region on the surface of T such that each point q ∈ DFR(p)
is reachable from p through a descent path. Then we check whether t lies inside DFR(s) is true. If
the answer is negative, then descent path from s to t does not exist. If the answer is positive, then
we proceed to phase 2. Note that, like T , DFR(s) is also triangulated.

Phase 2: In this phase we use a method similar to the one that was employed by Aleksandrov et
al. [3] and construct a graph G. We deviate from [3] on two accounts: We insert two sets of Steiner
points on the edges of the T instead of one. Of these two sets, the first set of Steiner points is same
as that of [3]. The second difference is that, unlike in [3], the graph edges are directed. We discuss
these details in the next section.

Phase 3: We use Dijkstra’s algorithm [6] or Bushwhack algorithm [8] to find the shortest path
between s and t in the directed graph G. We later show that this path is, in fact, an (1 + ǫ)-
approximation to SDP.

4 Approximated Graph G

Figure 2: ǫ-Steiner Points



4.1 Steiner Points Insertion

We insert two different sets of Steiner points on the edges of the DFR(s).

ǫ-Steiner-points: This set of Steiner points is the same as that of [3]. Let v be a vertex of DFR(s).
Define hv to be the minimum distance from v to the boundary of the union of its incident faces.
Let rv = ǫhv and r′v = ǫhv

n
for some ǫ > 0.

For each vertex v of face fi, do the following: Let eq and ep be the edges of fi incident to v. First,
place Steiner points on the edges eq and ep at distance r′v from v; call them q1 and p1, respectively.
By definition, |vq1| = |vp1| = r′v. Let θv be the angle between ep and eq. Define

δ =

{

(1 + ǫ. sin θv) if θv < π
2
,

(1 + ǫ) otherwise.

We now add Steiner points q2, q3, . . . , qµq−1 along eq such that |vqj| = r′vδ
j−1 where µq =

⌈logδ(
|eq|
r′v

)⌉. Similarly, add Steiner p2, p3, . . . , pµp−1 along ep where µp = ⌈logδ(
|ep|
r′v

)⌉. See Figure
2.

Define dist(a, e) as the minimum distance from a point a to an edge e. This segment from a to
e will be perpendicular to e.

Claim 1 (3.11 of [3]) |qiqi+1| ≤ ǫ.dist(q, ep) and pjpj+1 ≤ ǫ.dist(p, eq) where 0 < i < µq, 0 < j <

µp, q ∈ qiqi+1 and p ∈ pjpj+1.

Isohypse-Steiner-points: Let p1, p2, . . . , pµq
be the set of ǫ-Steiner-points on some edge ep. For

any non-horizontal edge (an edge e is horizontal if for any two points a and b on the edge e,
z(a) = z(b)) ej( 6= ei) add an Isohypse-Steiner-point dpi on edge ej if z(dpi) = z(pi). So, if there is
no point on edge ej such that z(dpi) = z(pi), then no Isohypse-Steiner-point is inserted. Intuitively,
we take a horizontal plane at each Steiner point and intersect it with the terrain. At each intersection
of the plane and an edge of terrain we insert a Steiner point. Note that, the insertion of Isohypse-
Steiner-point may increase the total number of ǫ-Steiner-points by at most a factor of n.

4.2 Graph Construction

For each face fi we treat all the ǫ-Steiner-points, Isohypse-Steiner-points and the vertices of the
DFR(s) as the node of graph Gi. Two vertices a and b of Gi are connected by a directed edge eab if
a and b lie on two different edges of face fi and z(a) ≥ z(b). The weight of each edge is the Euclidean
distance between a and b. Now we define an edge weighted directed graph G = G1 ∪G2 ∪ . . .∪Gn.

Claim 2 At most m = O(n logδ(
n|L|

r
)) Steiner points are added to each edge of fi, for 1 ≤ i ≤ n,

and where |L| is the length of the longest edge in DFR(s) and r is the minimum among the rv.

Claim 3 G has |V | = O(n2 logδ(
n|L|

r
)) vertices and |E| = O(n3 log2

δ(
n|L|

r
)) edges.



Figure 3: Approximation of SDP

5 Proof of Approximation Factor

Let π(s, t) = [s, o1, o2, . . . , om, t] be the shortest monotone descent path and it passes through the
edge sequence e1, e2, . . . , em. Then in each edge ei the path π(s, t) must pass through a pair of
Steiner-points which are closest to oi, say ui and bi (See Figure 3) such that z(ui) ≥ z(oi) ≥ z(bi).
Note that, in degenerate case point ui may be oi and oi may coincide with bi. Let us consider the
path π∗(s, t) = [s, u1, u2, . . . , um, t].

Lemma 1 π∗(s, t) is monotone descent.

To prove the above Lemma we need to prove the following statement.

Lemma 2 Let p and q be two points on two consecutive members ei and ei+1 of E which bounds a
face f , and z(p) = z(q). Now, if a line ℓ on face f intersects both ei and ei+1, and is parallel to the
line segment [p, q], then all the points on ℓ have the same z-coordinate.

Figure 4: Illustration of Lemma 2 and Corollary 3



Proof. Consider a horizontal plane h at altitude z(p). The intersection of the face f and the plane
h is the line segment [p, q]. Consider another horizontal plane h′ through a point r on line ℓ. The
intersection of f and h′ must be line parallel to [p, q], and hence it coincides with the line ℓ. Thus,
all the points on the line ℓ have the same z-coordinate. �

From the above Lemma, we get the following Corollary.

Corollary 3 If [p, q] makes an angle θ with ei (in anticlockwise direction see Figure 4) and [v, w]
(v ∈ ei and w ∈ ei+1) be the line segment that makes an angle β with ei (in anticlockwise direction).
Now

1. θ = β iff z(v) = z(w),

2. θ > β iff z(v) > z(w), and

3. θ < β iff z(v) < z(w).

Now we have to prove that the path π∗(s, t) is monotone descent. Without loss of generality
we can say that z(s) ≥ z(u1). We will prove this using contradiction. So the path from s to u1

is monotone descent. Let us consider that path s to uk−1 along π′(s, t) is monotone descent and
the path segment uk−1 to uk is not monotone descent. Then z(uk−1) < z(uk). Again the path
segment ok−1 to ok is monotone descent and z(uk) > z(ok) (As z(uk) > z(bk)). So there is an
Isohypse-Steiner-point duk ∈ [uk, ok] (by Lemma 2 and Corollary 3, see Figure 5) such that path
from s to duk is monotone descent. This contradicts the assumption that uk is closet to ok.

From the above discussion, we can conclude that the path π∗(s, t) is monotone descent. Hence
Lemma 1 follows.

We will need the following definitions of [3] to prove the approximation factor.
Let si be a segment of π(s, t) crossing face fi and Cv be sphere around v. Each si, must be of

one of the following types:

(i) si ∩ Cv = ∅, ii) si ∩ Cv=subsegment of si, and iii) si ∩ Cv = si.

Let Cσ1
, Cσ2

, . . . , Cσk
be a sequence of spheres (listed in order from s to t) intersected by type ii)

segments of π(s, t) such that Cσj
6= Cσj+1

. Now define subpaths of π(s, t) as being of two kinds:

Definition 1 Between-sphere subpath: A path consisting of a type ii) segment followed by zero or
more consecutive type i) segments followed by a type ii) segment. These subpaths will be denoted as
π(σj , σj+1) whose first and last segments intersect Cσj

and Cσj+1
, respectively. We will also consider

paths that begin or/and end at a vertex to be a degenerate case of this type of path containing only
type i) segments.

Definition 2 Inside-sphere subpath: A path consisting of one or more consecutive type iii) segments
all lying within same Cσj

; these are denoted as π(σj).

Lemma 4 Length of the any Inside-sphere subpath |π(σj)| is at most 2ǫh, where h is maximum
among all hv.

Proof. Let us consider any face f inside a sphere Cv. The subtriangular face u′vw′ of f has two
side of length ǫhv

n
. So the length of any segment si within u′vw′ can be at most 2ǫhv (by triangular

inequality). There may be at most n such subtriangles inside Cv. Hence the lemma follows. �



Figure 5: Proof of Lemma 1

Lemma 5 If π(s, t) consists of only type i) segments then |π∗(s, t)| ≤ (1+2ǫ)|π(s, t)|, where |π(a, b)|
implies the length of the path π(a, b).

Proof. We have

|π∗(s, t)| = |su1| + |u1u2| + |u2u3| + . . . +

+|um−1um| + |umt|

≤ |so1| + |o1u1| + |u1o1| + |o1o2| +

+|o2u2| + |u2o2| + |o2o3| +

+|o3u3| + |u3o3| + . . . + |om−1um−1|

+|om−1om| + |omum| + |umom| + |omt|

= |so1| + |o1o2| + |o2o3| + . . . +

+|om−1om| + |omt| +

+2{|o1u1| + |o2u2| + . . . + |umom|}

≤ |so1| + |o1o2| + |o2o3| + . . . +

+|om−1om| + |omt| +

+2ǫ{|o1o2| + |o2o3| + . . . + |om−1om|}

(using Claim 1, Lemma 2 and Corollary 3)

≤ (1 + 2ǫ)π(s, t).

�

From the property 1, Lemma 4 and Lemma 5 we can conclude that there exists a path π∗(s, t) such
that |π∗(s, t)| = (1 + ǫ)|π(s, t)|. Dijkstra’s algorithm may output a monotone descent path π∗∗(s, t)
which may be a different path from π∗(s, t). As Dijkstra’s algorithm outputs a path of shortest
length in graph G, we have |π∗(s, t)| ≥ |π∗∗(s, t)|. So, we can conclude the following theorem.

Theorem 6 Let 0 < ǫ < 1
2
. Let DFR(s) be a terrain with n faces and let s and t be two of its

vertices. An approximation π′(s, t) of a shortest monotone path π(s, t) can be computed such that



π′(s, t) ≤ (1+ǫ)π(s, t). The approximate path can be computed in O(|V | log |V |+|E|) time using Di-

jkstra’s algorithm or in O(|V | log |V |) time using Bushwhack algorithm, where |V | = O(n2 logδ(
n|L|

r
))

and |E| = O(n3 log2
δ(

n|L|
r

)). Here, δ = (1 + ǫsinθ) (by virtue of Claim 3), where θ, L, r denote the
smallest angle among the triangles, the length of the longest edge, and the length of smallest rv,
respectively.

Proof. Property 1 says that the length of the subpaths between any two spheres Cva
and Cvb

is at
least (1 − 2ǫ)h, where h is maximum among all hv. Lemma 4 says that length of the any Inside-
sphere subpath |π(σj)| is at most 2ǫh. Lemma 5 says that the approximation factor for the paths
that does not contains Inside-sphere is π(s, t) = (1 + 2ǫ)π′(s, t). Combining Property 1, Lemma
4 and Lemma 5 we can conclude that the approximation factor for the Between-spheres path is
π(s, t) = 2ǫ

(1−2ǫ)
π′(s, t). Hence the lemma follows. �

In Aleksandrov et al. [4] it is shown that by placing Steiner points in the interior of triangles (i.e.,
on angular bisectors), shortest paths on polyhedral surfaces can be approximated within a factor of
(1 + ǫ), while placing a reduced number of Steiner points as compared to that in [3]. The reduction
is by a factor of 1√

ǫ
. It turns out that we can replace the set of Steiner points as introduced in

Section 4.1 in this paper by that on bisectors as in [4] and then insert the corresponding Isohypse
points on the bisectors. The distance between any two Steiner points belonging to neighboring
bisectors is defined to be the length of the local shortest descending path restricted to lie within the
corresponding triangles. It turns out that Theorem 6 is still valid and we will achieve a reduction
in the number of Steiner points by approximately a factor of 1√

ǫ
.
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