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A note on drawing direction-constrained paths in 3D
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Abstract

We study the problem of drawing a graph-theoretic path
where each edge is assigned an axis-parallel direction in
3D. Di Battista et al.[3] gives a combinatorial character-
ization for such path drawings that start at the origin
and reach a point in an octant. In this paper, we con-
sider the drawability question for such paths that start
at the origin and reach a point in a quadrant or an axis.
We show that neither the necessity nor the sufficiency
of the characterization given in [3] extends immediately
to handle these cases. Furthermore, we give necessary
conditions for such reachability, and also give examples
to show they are not sufficient.

1 Introduction

Orthogonal drawings arise in applications in diverse
fields such as information visualization and VLSI cir-
cuit layout. One of the most successful methodologies
for generating 2D orthogonal layouts of graphs is the
so-called Topology-Shape-Metrics approach, where the
task of defining the shape of the drawing is separated
from the task of determining the geometric coordinates
of the vertices in the final drawing.

In contrast to its 2D counterpart, however, the
Topology-Shape-Metrics approach has not been much
exploited in 3D. The first step toward achieving this goal
is due to Di Battista et al. [2, 3], who gave combinatorial
characterizations of paths and cycles with given shape
such that they admit simple orthogonal 3D drawings.
In particular, reference [3] answers the path reachabil-
ity problem: given a point p lying in an open octant
in R3 and a graph-theoretic path with an axis-parallel
direction label on each edge, can we compute a drawing
of the path such that the drawing starts at the origin
and ends at point p while respecting the directions la-
bels? While a combinatorial characterization is given
for paths that admit such drawings, this characteriza-
tion does not handle cases where p is located in a quad-
rant or an axis, i.e., where 2 or 1 coordinates of p are
zero. In this paper, we study the path reachability prob-
lem where the final vertex is to be drawn in a quadrant
or an axis, and show that the characterization given in
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Figure 1: A drawing of σ = NUESW that reaches the
UN-quadrant

[3] does not immediately extend to handle these cases.
Indeed the necessary condition does not extend; this pa-
per gives a necessary condition, together with examples
that show it is not sufficient, and presents chracteri-
zation of low dimensional reachability as a challenging
open problem.

2 Preliminaries

We define a shape path to be a graph-theoretic path σ,
where each edge is labeled with an axis-parallel direc-
tion in 3D: N, S, E, W, U, or D. For obvious reasons,
we assume that the labels on adjacent edges must be
perpendicular to each other. Furthermore, we often let
X(X’), Y(Y’), or Z(Z’) denote an axis-parallel (and its
opposite) direction without referring to a specific direc-
tion. When we refer to a particular element, i.e., an
edge, in a shape path σ, we often denote it by σi, where
i is an index for the edges of σ. Also, when we refer to
a subpath from vertex a to vertex b, we often denote it
by σab. We typically describe a shape path σ by giving
the sequence of the direction labels on its edges in the
order that they appear in σ.

A flat of a shape path σ is a consecutive subsequence
of σ that is maximal with respect to the property that its
labels are coplanar. We say a flat is heavy if it contains
3 or more edges, and light otherwise. Observe that the
first edge of a flat is the last edge of the previous flat,
and the last edge of a flat is the first edge of the next
flat. We call such edges that belong to two consecutive
flats transition elements (See [3].).
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We say a drawing of a shape path is simple and or-
thogonal if no two edges intersect except at a shared
endpoint, and every edge is drawn parallel to an axis.
We let Γ(σ) denote a simple orthogonal drawing of σ
that respects the direction labels on the edges. Fur-
thermore, we often use uv to denote the line segment
that represents an edge uv in Γ(σ). See Figure 1 for
an example of a simple orthogonal drawing of a shape
path. We say a drawing Γ is in general position if, for
every pair u, v of vertices that share a coordinate, either
they belong to the same flat, or one belongs to the first
flat and the other to the last flat. The following lemma
allows us to only consider drawings in general position.

Lemma 1 [2](General Position Lemma) Any simple
orthogonal drawing Γ(σ) can be perturbed to lie in gen-
eral position.

Let τ be a not necessarily consecutive subsequence
of σ. We say τ is a canonical sequence if (1) the la-
bels in τ are pairwise distinct; (2) no flat of σ contains
more than three labels of τ ; and (3) if a flat F of σ
contains two or more labels of τ , then τ ∩ F is a con-
secutive subsequence of σ. We often call the elements
of a canonical sequence canonical labels, and use spe-
cial notation on these labels such as ,̄ ,̂˜ to refer to a
particular occurrence of its underlying label. Moreover,
we sometimes disregard the ordering of the labels in a
canonical sequence by using the set notation {}. For ex-
ample, τ = {Ū , N̄ , Ē} completely describes a canonical
sequence. When we consider canonical sequences in this
fashion, we can thus use any conventional set operation
on them.

Finally, we define the type of a canonical sequence
to be the set of its direction labels by disregarding the
ordering of the canonical labels in the sequence. For
example, τ = {Ē, N̄ , Ū} is a canonical sequence of type
{U, N, E}.

Related Work Di Battista et al. characterizes the
path reachability problem for cases where the final ver-
tex is to be drawn in an octant as follows.

Theorem 2 [3] Let σ be a shape path and let p be a
point in the XYZ octant. Then there exists a simple
orthogonal drawing of σ that starts at the origin and
terminates at p if and only if σ contains a canonical
sequence of type {X, Y, Z}.

The next step towards extending the Topology-
Shape-Metrics approach to 3D is taken by the same au-
thors [1, 2], who give a characterization for cycles that
admit simple orthogonal drawings. In particular, the
following results provide useful tools for our discussion.

Lemma 3 [1] Let Γ(σ) be a drawing of a 2D shape path
σ that starts at the origin, and that has the last edge uv

intersecting the X-axis orthogonally. Let Y, Y ′ be the di-
rection labels that denote the direction of uv and its op-
posite direction. Then σ contains a canonical sequence
of type {X, Y, Y ′}.

Lemma 4 [2] Let τ1 and τ2 be two canonical sequences
for a shape path σ such that (1) τ1 and τ2 have no
direction labels in common, and (2) no flat of σ contains
an element from τ1 and an element from τ2. Then τ1∪τ2

is canonical for σ.

Lemma 5 [1] Let σ = σ1 . . . σiσi+1 . . . σn be a shape
path such that there is a light flat Fl = σiσi+1. If τ1

and τ2 are two canonical sequences for σ such that τ1 ⊆
σ1 . . . σi and τ2 ⊆ σi+1 . . . σn, and τ1 and τ2 have no
direction labels in common, then τ1 ∪ τ2 is canonical for
σ.

On another note, the characterization given for 3D
orthogonal shape cycles in [2] does not extend to even
seemingly simple graphs. Di Giacomo et al. [4] discov-
ered a shape graph, consisting of only 3 cycles, such that
every simple shape cycle induced by its vertices admits
a simple orthogonal drawing, but the shape graph itself
cannot be drawn in a simple orthogonal manner.

Finally, the latest result on orthogonal shape graphs is
by Patrignani [6], where it is shown that the 3D drawa-
bility of shape graphs is, in general, NP-hard.

3 Reaching a quadrant orthogonally

In this section, we discuss the properties of shape path
drawings such that the first vertex is at the origin, and
the last edge reaches a quadrant orthogonally. We say
an edge uv orthogonally intersects the XY-quadrant if
uv is perpendicular to the XY-quadrant, and an end-
point of uv lies in the XY-quadrant, or u and v lie in
the XYZ and XYZ’ octants respectively. Similarly, we
say an edge uv orthogonally intersects the X-axis if uv is
perpendicular to the X-axis, and an endpoint of uv lies
in the X-axis, or u and v lie in two distinct quadrants
adjacent to the X-axis. The following natural general-
ization of Lemma 3 appears in [2].

Lemma 6 [2] Let Γ(σ) be a drawing of a 3D shape
path σ that starts at the origin, and that has its last edge
uv orthogonally intersecting the XY-quadrant. Then, σ
contains a canonical sequence of type {X, Y, Z, Z ′}.

Here we show that the above proposition does not
hold by exhibiting a counterexample1.

Counterexample 7 The shape path σ = NUESW
does not contain a canonical sequence of type

1We note that the changes made from Lemma 6 to Lemma 8
does not affect the validity of the characterization for 3D orthog-
onal cycle drawings given in [2], as verified in [5].
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{N, U, E, W}, yet σ admits a drawing that starts at the
origin, and has its last edge orthogonally intersecting
the UN quadrant as shown in Figure 1.

Hence, we repair Lemma 6 as follows.

Lemma 8 Let Γ(σ) be a drawing of a 3D shape path
σ that starts at the origin, and has its last edge uv or-
thogonally intersecting the XY-quadrant. Then σ has a
canonical sequence that contains {X, Y, Z, Z ′} as a sub-
set.

Proof Sketch: We use induction on the length of σ,
denoted by |σ|. When |σ| = 4, the statement holds
trivially. Suppose the statement holds for all values
4 ≤ |σ| ≤ k, and consider the case where |σ| = k + 1.
If there exists an edge other than uv that orthogonally
intersects the XY-quadrant, we are done by the induc-
tion hypothesis. So, we assume no other edge intersects
the XY quadrant orthogonally.

Let Fpv denote the flat that contains uv, and con-
sider the first vertex p of Fpv. We assume, without loss,
that u and v belong to two distinct octants adjacent to
the XY quadrant (i.e. uv crosses the XY quadrant.).
Otherwise, we can stretch the edge uv slightly to cross
the quadrant without otherwise changing the drawing.
Then, we assume, without loss of generality, that u is
in the UNE octant, v is in the UNW octant, and thus
uv is crossing the UN quadrant. Further, we assume
Fpv is a NSEW flat. Other cases can be handled by
applying the same arguments after permuting the di-
rection labels. Then, we distinguish 9 different cases
depending on the location of p: p may belong to one of
the four octants UNE, UNW, USE, USW, or one of the
four quadrants UN, UE, US, UW, or the U axis. Here
we discuss one of these cases, which covers Counterex-
ample 7, as a typical example.
p lies in the UN-quadrant: Let a denote the first
vertex of σ. By the general position assumption, a and
p must lie in the same flat. Since p is the first vertex of
the flat containing uv, we have that pp′ is a transition
element, and there are two cases: (i) There is a flat Fap

that starts at a and ends at p. Then there is a light
flat between Fap and Fpv; (ii) There is a flat Fap′ that
starts at a and ends at p′. By Theorem 2, σap contains
τ1 = {Ū , N̄}. Depending on where uv intersects the UN
quadrant, there are two cases:

1. p lies south of uv: By Lemma 3, σpv contains τ2 =

{Ê, N̂ , Ŵ}. In case (i), {Ū} ∪ τ2 is canonical by
Lemma 5. In case (ii), then pp′ is either N or S.
Thus, pp′ is neither Ê, nor Ŵ . Furthermore, since
τ2 belongs to the flat Fpv, N̂ must appear between

Ê and Ŵ , so pp′ cannot be N̂ . Hence, pp′ /∈ τ2. By
Lemma 4, {Ū} ∪ τ2 is canonical.

2. p lies north of uv: By Lemma 3, σpv contains τ3 =

{Ẽ, S̃, W̃}. In case (i), then τ1 ∪ τ3 is canonical

by Lemma 5. In case (ii), then pp′ is either N or
S. Thus, pp′ is neither Ẽ nor W̃ . Furthermore,
since τ3 belongs to the flat Fpv it follows that S̃

must appear between Ẽ and W̃ , so pp′ cannot be S̃.
Hence, pp′ /∈ τ3. By Lemma 4, τ1 ∪ τ3 is canonical.
�

4 Necessity

In this section, we give necessary conditions for shape
paths that start at the origin and end at a point on a
quadrant or an axis. We first consider shape paths that
are drawn to reach an axis orthogonally.

Lemma 9 Let Γ(σ) be a drawing of a 3D shape path σ
that starts at the origin, and has its last edge uv orthog-
onally intersecting the X-axis. Then, σ has a canonical
sequence that contains {X, Y, Y ′, Z, Z ′} as a subset.

Proof Sketch: We use induction on the length of σ.
Then, as in the proof of Lemma 8, we may assume that
no other edge in σ may orthogonally intersect the X-
axis. Assume, without loss, that u belongs to the UE-
quadrant, and v belongs to the UW-quadrant. Then
uv crosses the U-axis. Now, consider the flat Fpv that
contains uv, and let p denote the first vertex of Fpv. We
assume, without loss, that Fpv is an NSEW flat. Then
there are 8 cases to consider, depending on the position
of p in the drawing: p may belong to one of the 4 octants
UNE, UNW, USE, USW, or one of the 4 quadrants UN,
UE, US, UW. We can show, for each case, that σ has a
canonical sequence that contains {X, Y, Y ′, Z, Z ′} as a
subset. �

Notice that this result is analogous to Lemma 8. Sim-
ilarly to Lemma 8, Lemma 9 cannot be strengthened so
that σ contains exactly those 5 labels. Consider the
following example.

Example 10 The shape path σ = NUSEDW can be
drawn so that Γ(σ) starts at the origin and intersects the
U axis orthogonally. See Figure 2. However, σ does not
contain a canonical sequence of type {U, N, E, S, W}.

Note that the statement of Lemma 9 requires that
the last edge of σ orthogonally intersects the X axis.
Now we show that the same necessary condition holds
for shape path drawings without this requirement.

Theorem 11 Let Γ(σ) be a drawing of a 3D shape path
σ that starts at the origin, and has ends at some point
p in the X axis. Then, σ has a canonical sequence that
contains {X, Y, Y ′, Z, Z ′} as a subset.

Proof. Let a be the first vertex of σ, and let uv the last
edge of σ. By assumption, v lies in the X axis. If uv
is orthogonal to the X axis, we are done by Lemma 9.
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Figure 2: A drawing of a shape path σ = NUSEDW
that intersects the U axis orthogonally; but σ it-
self does not contain a canonical sequence of type
{U, N, E, S, W}.

Otherwise, because σ is a 3D shape path, there must ex-
ist an edge bc before uv such that bc touches the axis or-
thogonally, and σac is a 3D shape path. Then, σac con-
tains the desired canonical sequence by Lemma 9. �

Similarly, the same necessary condition in Lemma 8
holds for shape path drawings that start at the origin,
and terminate at some point in a quadrant.

Theorem 12 Let Γ(σ) be a drawing of a 3D shape path
σ that starts at the origin, and ends at some point in the
XY quadrant. Then, σ has a canonical sequence that
contains {X, Y, Z, Z ′} as a subset.

Proof. Let a denote the first vertex of σ, and let uv
be the last edge of σ. If uv is orthogonal to the XY-
quadrant, we are done by Lemma 8. By the same
reasoning, if there exists an edge that, in the drawing
Γ(σ), intersects the XY-quadrant orthogonally, we are
done. Otherwise, Γ(σ) must reach the XY-quadrant ei-
ther through the X-axis or through the Y-axis. Let pq
denote the last edge of σ that enters the XY-quadrant
(i.e. q lies in the XY-quadrant while p does not.). Then,
pq must intersect either the X-axis or the Y-axis orthog-
onally. Furthermore σaq is a 3D path. If pq intersects
the X-axis, by Lemma 9, there is a canonical sequence
in σaq that contains {X, Y, Y ′, Z, Z ′} as a subset. If pq
intersects the Y-axis, by Lemma 9, there is a canoni-
cal sequence in σaq that contains {X, X ′, Y, Z, Z ′} as a
subset. �

5 Insufficiency

Observe that Lemmas 11 and 12 may serve as necessary
conditions for characterizing shape paths that start at
the origin and end at some point in a quadrant or an
axis. If the converse of these two lemmas were true, we

would have characterizations of such shape paths that
can be checked in linear time, using the algorithm of
Di Battista et al. [2, 3]. Unfortunately, the converse of
these two lemmas does not hold. We offer the following
examples.

Example 13 Let σ =UNESDW. Then, τ = UNESW
is a canonical sequence for σ. However, σ does not ad-
mit a simple orthogonal drawing Γ that starts at the
origin, and terminates at some point in the U-axis.

Example 14 Let σ =NEDSWU. Then τ = NEWU is
a canonical sequence for σ. However, σ does not admit
a simple orthogonal drawing Γ that starts at the origin,
and terminates at some point in the UN-quadrant.

6 Conclusion & open problems

In this note, we have shown that the characterization
of simple orthogonal shape paths given in [3] does not
extend immediately to shape paths reaching a point in
a quadrant or an axis. We have repaired a lemma of
[2], and used this to provide necessary conditions for
reachability of axes and quadrants. An obvious ques-
tion, then, would be to provide a characterization for
such reachability. More generally, it would be of inter-
est to characterize d-dimensional shape paths reaching
a k-dimensional subspace, as [3] provides a characteri-
zation only for reaching k = d-dimensional subspaces.
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