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Abstract

We introduce bundle-free triangulations, that are free of
large collection of triangles overlapping a circle empty
of vertices. We prove that bundle-free Steiner trian-
gulations can be used as an approximate solution for
the minimum weight Steiner triangulation problem. We
present new algorithms, implementations and experi-
mental study for computing minimum weight Steiner
triangulations.

1 Introduction

Consider the following well-known problem, known as
the Minimum Weight Triangulation (MWT) problem:

Problem 1 [MWT] Given a set of points in the plane,
compute the triangulation that minimizes the summa-
tion of edge lengths.

The summation of the edge lengths in a triangula-
tion is referred as the weight of the triangulation. The
MWT problem has been studied by many and has re-
cently been proven to be NP-hard [MR06]. When points
additional to the input points are allowed, we get an-
other interesting triangulation problem, called the Min-
imum Weight Steiner Triangulation (MWST) [Epp94].
Additional points are called the Steiner points.

Problem 2 [MWST] Given a set of points in the
plane, compute the Steiner triangulation that minimizes
the summation of edge lengths.

An approximation algorithm for computing MWST
is proposed by Eppstein [Epp94]. This algorithm uses
quadtree refinement. Here, we propose alternative so-
lutions for the MWST problem. Our solutions rely on
a new geometric structure, called bundle-free triangu-
lations. We show that quality triangulations are a spe-
cial type of bundle-free triangulations. As a result, the
Delaunay refinement algorithms can be used to solve
MWST. Alternative heuristics for computing bundle-
free triangulations with smaller weight are also studied.

There are various approximation algorithms [LK98,
PH87, RS06] as well as heuristics and implementations

[AAH99, BS98, BDE02, DKC00] for computing mini-
mum weight triangulations. Minimum weight Steiner
triangulations, however, are much less studied. For in-
stance, the complexity of the MWST problem remains
as an open problem. We are aware of two approxima-
tion algorithms for computing MWST [Epp94, CL02].
[Epp94] presents an approximation algorithm for com-
puting MWST of point sets and convex polygons.
[CL02] extends this work to arbitrary polygons (with
holes). We are not aware of a proper implementation
of neither of these methods. Existing quadtree based
quality triangulation software seem to be a reasonable
alternative for this purpose.

2 Approximation Algorithms for MWST

Our algorithms and contribution leverage on the
quadtree refinement result of Eppstein [Epp94], which
we review in the next section. In addition, we rely on
the following definition. Given a planar point set P , the
local feature size at any point x in the plane, denoted
lfsP (x), is the radius of the smallest disk centered at x
that intersects two points in P [Rup93].

2.1 Quadtree MWST

A quadtree is a recursive partition of a region of the
plane into axis aligned squares. One square, the root,
covers the entire region. A square can be divided into
four child squares with horizontal and vertical line seg-
ments through its center. The collection of squares then
forms a tree with smaller squares at lower levels of the
tree. A quadtree is said to be balanced if the size of
any two adjacent leaf squares differ at most by a fac-
tor of two. Below, we summarize two results given by
Eppstein [BEG94, Epp94] establishing a connection be-
tween the quadtree refinement, minimum weight Steiner
triangulations, and the local feature size function.

Theorem 1 Quadtree refinement gives an approximate
solution for the MWST problem. Moreover, the size
(side length) of each leaf quadtree cell is an approxi-
mation of the local feature size function in the cell.
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2.2 Bundle-free triangulations and their weight

Definition 1 A set of k triangles is called a bundle,
if there exists a disk empty of all the input points and
intersecting all k triangles.

Figure 1: Two sets of 9-bundle triangles is shown. This
triangulation contains other 9(and more)-bundle triangles.

A triangulation is said to be k-bundle-free if it con-
tains no set of triangles that forms a k-bundle. In gen-
eral, there may not be bundle free triangulation of a
point set for small bundle constants, even if the Steiner
points are allowed. However, for any input and suf-
ficiently large bundle constant, it is possible to com-
pute bundle free triangulations. This can be achieved
by quality triangulation algorithms as described in Sec-
tion 2.3. Achieving a quality constraint implies a bundle
free triangulation. The converse is not true.

Lemma 2 Let T be a Steiner triangulation of a point
set P and P ′ be the vertex set of T . If T is k-bundle-
free and lfsP ′ = Ω(lfsP ) then the weight of T is at
most a constant factor of the weight of the minimum
weight Steiner triangulation of P .

Proof. We overlay the bundle free triangulation T
with a balanced quadtree subdivision of the domain that
approximates the local feature size. For each quadtree
leaf cell, we give a bound on the summation of the edge
length of the bundle free triangulation. Let C be a
quadtree cell with side length l and E is the set of edges
of T that intersects C. We classify E into two subsets.
Let E1 be the set of edges that are incident to a vertex
inside C. Let E2 = E − E1.

We first give a bound on the size of E1. Let V be
the set of vertices inside C. Since the quadtree approx-
imates the local feature size, |V | ≤ c1 where c1 is a
positive constant. We count the number of triangles in-
cident to vertices in C, by locating two relatively small
disks that are tangent to each other around each vertex
in C. See Figure 2 (left). Each disk is empty of points
by construction, and can not intersect with k or more
triangles. Hence, the number of triangles incident to a
vertex inside C is constant.

We now give a bound on the size of E2. We present
a construction that carefully places a set of disks empty

Figure 2: Counting the edges vertices incident to a vertex
inside the quadtree cell. Counting the edges crossing the
quadtree cell.

of other points in two stages. See Figure 2 (left). First,
we pack a set of spheres along the diagonals of the cell
C. We choose the radii of these disks a constant factor
smaller than the side length of C such that each disk
contains at most a single vertex. Next, we replace each
disk that contains a vertex with two other disks exclud-
ing the point and still maintaining tangency along the
diagonals of the cell. The disk at the center, if contains
a vertex, is replaced with four disks in order to maintain
four tangency points. Let D be the set of the resulting
set of disks. By construction, |D| is bounded by a con-
stant. Our construction assures that an edge that does
not have an endpoint inside C has to either intersect a
disk in D or be tangent to two disks in D. There could
be at most a constant number of edges tangent to two
touching disks in D. For each disk, there could be at
most k−2 edges intersecting it. Otherwise, the triangu-
lation would not be bundle free. Hence, |E2| is bounded
by a constant.

Since, |E| is bounded by a constant and length of the
portion of each edge inside C is at most

√
2l, the weight

of the bundle free triangulation is within a constant fac-
tor of the weight of the balanced quadtree.

2.3 Delaunay Refinement for MWST

Delaunay refinement algorithms are originally proposed
to compute quality triangulations (which have lower
bound on the smallest angle). It is shown that the lo-
cal feature size function with respect to their output
is within a constant factor of the the local feature size
function with respect to their input [Rup93]. The fol-
lowing lemma together with the lemma in the previous
section suggests that Delaunay refinement algorithms
can be used to give an approximate solution for the
MWST problem.

Lemma 3 Let T be a triangulation with a lower bound
α on its smallest angle. Then, T is bundle free for some
constant k1.
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Proof. Let c be an empty circle inside the domain of
T . We give an upper bound on the number of triangles
that intersect c. Observe that all triangles, except two,
intersect the boundary of c twice. Thanks to the lower
bound α, larger one of these two intersections is an arc
of angle at least α/2. So, there are at most 4π/α + 2
triangles intersecting the circle. Hence, T is k1 bundle
free for k1 = 4π/α + 3.

Corollary 1 Delaunay refinement approximates
MWST.

3 Experiments

Implementations. We are not aware of any imple-
mentation of the quadtree based MWST algorithms
[Epp94, CL02]. However, the quadtree algorithms for
MWST and for quality triangulations rely on the same
principles. Hence, for comparatison, we use a quadtree
refinement software (Tripoint by Scott Mitchell) origi-
nally developed to produce quality triangulations.

Delaunay refinement implementations are parameter-
ized by the quality constraint. We have shown already
that Delaunay refinement gives an approximate solu-
tion for the MWST problem, for any constant quality
guarantee (as long as the output point set respects the
local feature size). In practice, it is worth to find which
constraint values lead to smaller weight triangulations.
Plots of the weight of Steiner triangulations with re-
spect to varying angle constraint (Figure 3) reveal that
the minimum weight is achieved generally when the an-
gle constraint is in the range of 5◦ − 10◦.
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Figure 3: Weight of the quality triangulation of the Ellipse
and Florida data sets as the constraint angle changes from 0◦

to 20◦. The weights are slightly smaller when the offcenters
are used as the Steiner points instead of circumcenters within
the Triangle software of Shewchuk.

We also implemented a bundle removal heuristic as a
relaxation of the Delaunay refinement algorithm, allow-
ing skinny triangles (with small angles) as long as they
do not form a bundle. As a second heuristic edge-flip
operations are utilized to improve the weight greedily.

Data Sets. We tested these algorithms on different
type of planar data sets (point sets, convex polygons,
polygons with holes) of various distributions (Random,
Kuzmin, etc.). The Tripoint software has a limitation
on the input type (NA entries in Table 1).

Results. Table 1 presents a summary of our experi-
mental results. The boundary of the input must belong
to every triangulation of the input. Hence, we report
the weight of the boundary separately and exclude it
in the other entries. Figure 4 shows the output of the
mentioned algorithms on two different data sets.

It is rather clear from our experiments that the Delau-
nay based software are by far superior to the quadtree
refinement implementation. For most data sets, we ob-
served significant difference, between the weight of the
initial Delaunay triangulation and the refined triangula-
tion. The bundle removal heuristic is only slightly (5%
or so) better performing than the Delaunay refinement.

4 Discussion

Our definition and approximation result on bundle free
triangulations does not rely on the Delaunay property,
while our current implementation does. It would be in-
teresting to employ other triangulation algorithms (e.g.,
LMT-heuristic or other MWT heuristics) as part of our
bundle removal strategy. In this direction, our prelim-
inary experiments suggest some room for improvement
when edge flips are integrated into our bundle removal
heuristic.

Approximation constants for our results rely on the
the bundle-free constant (k1 = 27 for α = π/6 which
is realizable by Delaunay refinement), and how well the
quadtree refinement approximates the local feature size
and the MWST. As a result our overall approximation
constant is too large to be relevant in practice. Finding
a tight approximation bound is left as an open problem.

Both the quadtree refinement and the Delaunay re-
finement result in points sets that are well-spaced. With
this observation in mind, we list the following interest-
ing open problems.

Problem 3 For a given well-spaced point set, is there a
polynomial-time algorithm for computing the minimum
weight triangulation?

Problem 4 Is the MWST of a well-spaced point set has
finite size?

Problem 5 Given a point set P , is there an algorithm
to detect whether the minimum weight triangulation and
the minimum weight Steiner triangulation of P is the
same?
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Data Set Weight
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refinment (QTR), the Delaunay refinement (DR), the bundle removal heuristc (BRH), and the bundle removal with edge flip
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triangulation excluding the boundary has weight 100.

Figure 4: Output of the Delaunay triangulation, the quadtree refinment, the Delaunay refinement, the bundle removal
heuristc, and the bundle removal with edge flip heuristic implementations are shown from left to right.
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