CCCG 2007, Ottawa, Canada, August 20-22, 2007

Computing Acute and Non-obtuse Triangulations

Hale Erten

Alper Ungor

Dept. of Computer & Information Science & Engineering, University of Florida
{herten,ungor}@cise.ufl.edu

&5
BV VA S
BREOKARRE

Figure 1: Acute triangulation of the domain Acute (in Palatino font).

Abstract

We propose a method for computing acute (non-obtuse)
triangulations. That is, for a given two dimensional do-
main (a set of points or a planar straight line graph),
we compute a triangulation of the domain such that all
angles are less than (or less than or equal to) 7/2. This
leads to the first software to compute such triangula-
tions.

1 Introduction

Large angles in a triangulation is known to lead to un-
desired numerical results in many scientific applications
[1]. A lower bound on the smallest angle of a triangu-
lation implies an immediate upper bound on its largest
angle (the converse is not true). Most triangulation al-
gorithms rely on this observation and hence focus on
providing lower bounds on the smallest angle.

Problem 1 [No Small Angle Triangulation]. Given
a two dimensional input domain (point set or planar
straight line graph) and a constraint angle o, compute
a triangulation of the domain such that all angles are
larger than «.

There are many good solutions for this well-known
problem [4, 11, 13, 19]. The lower bounds provided for
the smallest angle, however, are not strong enough to
address the acute and non-obtuse triangulation prob-
lems, which are defined below.

Problem 2 [Acute Triangulation]. Given a two di-
mensional input domain (point set or planar straight
line graph), compute a triangulation of the domain such
that all angles are less than /2.

Problem 3 [Non-obtuse Triangulation]. Given a two
dimensional input domain (point set or planar straight
line graph), compute a triangulation of the domain such
that all angles are less than or equal to w/2.

1.1 Motivation

Acute angle constraint is motivated by various scien-
tific computing [20] and computer graphics applications
[7, 14, 18, 20]. A recent space-time meshing algorithm,
called the tent-pitcher, by Ungér and Sheffer [20] relies
on the acute triangulation of the initial spatial domain.
The algorithm is known to generate a valid space-time
mesh if the initial space mesh is an acute triangula-
tion [20], but may fail if there is an obtuse angle or
even a right angle. Later, improved versions of the
tent-pitching algorithm are proposed [10], removing the
acute angle requirement. However, loss of efficiency is
expected in practice, that is more space-time elements
are needed, whenever the spatial triangulation contains
obtuse triangles.

Kimmel and Sethian [14] also make use of acute tri-
angulations in their work on computing geodesic paths
on manifolds. Their algorithm, called the fast march-
ing method, computes geodesic distances and shortest
paths on triangulated domains. They provide a simpler
version of the algorithm with a better accuracy analysis
when the underlying triangulation is acute. Acute and
non-obtuse triangulations are also employed in other
graphics applications for guaranteeing validity of pla-
nar mesh embedding via discrete Harmonic maps [8].

19th Canadian Conference on Computational Geometry, 2007

1.2 Previous work

While their definitions look similar, these two prob-
lems differ greatly in their difficulty levels and hence
the availability of the solutions. For instance, there are
algorithms for computing a non-obtuse triangulation of
simple polygons [2, 3, 5, 9], but no algorithm is known
for computing an acute triangulation of arbitrary simple
polygons. Algorithmic and existence results for acute
triangulations are known when the input is a point set
or a low-complexity polygon such as an obtuse triangle,
a square, a quadrilateral or a pentagon. Lindgren [15]
showed that at least eight triangles are needed to tri-
angulate a square with all acute triangles. Later, Cas-
sidy and Lord [6] showed that for any n > 10 (but not
for n = 9) there is an acute triangulation of the square
with exactly n triangles. Gardner [12] studied the acute
triangulation problem when the input is simply a trian-
gle. Manheimer proved that seven acute triangles are
necessary and sufficient to subdivide a non-obtuse tri-
angle [17]. Recently, Maehara [16] showed that an ar-
bitrary quadrilateral can be tiled by 10 (but perhaps
not by any fewer) acute triangles. If we restrict our-
selves to two-dimensional point sets, a solution to the
acute triangulation problem is given by Bern et al. [4].
Their approach uses a quadtree, and replaces the stan-
dard square quadtree cells by tiles with protrusions and
indentations.

2 Proposed Solution

Our solution for the acute and non-obtuse triangulation
problems relies on a recent Delaunay refinement algo-
rithm proposed by the authors to address Problem 1
[11]. By changing the key components of this algorithm,
we derive a method to compute acute and non-obtuse
triangulations.

Delaunay refinement method involves first computing
an initial Delaunay triangulation of the input domain,
and then iteratively adding points called Steiner points
to remove the triangles with small angles. Tradition-
ally, circumcenters of bad triangles are used as Steiner
points [19]. An alternative type of Steiner points, called
offcenters , is introduced later, which lead to the design
of the first time-optimal Delanuay refinement algorithm
[13]. The offcenter insertion algorithm is now used as
the default option in the popular Delaunay refinement
software Triangle !. Both the original circumcenter
and the offcenter insertion variants of the Delaunay re-
finement suffer from a so-called termination problem for
large values of the constrained angle a. Recently, the
authors developed a Delaunay refinement algorithm to
alleviate this problem. The original Delaunay refine-
ment algorithm of Ruppert is proven to terminate with

Thttp://www-2.cs.cmu.edu/~quake/triangle.html

size-optimal quality triangulations for a < 20.7°. In
practice, it generally works for o < 34° and fails to ter-
minate for larger constraint angles. The new variant
of the Delaunay refinement algorithm generally termi-
nates for constraint angles up to 42°. Experiments also
indicate that this new refinement algorithm computes
significantly (almost by a factor of two) smaller trian-
gulations than the output of the previous Delaunay re-
finement algorithms.

The performance of the new refinement algorithm
falls short of the 45° bound, which would imply a so-
lution for Problems 2 and 3. Nevertheless it enabled
us to design an acute/non-obtuse algorithm. There are
two key components of this algorithm. First, it uses the
Voronoi diagram of the iteratively refined domain to
perform a search to find locally optimal Steiner points
for insertion. Second, it performs a simple relocation
step for the previous Steiner points to see a bad trian-
gle can be fixed without a new Steiner point insertion.
Below, we describe the adoption of these key compo-
nents for a solution for acute/non-obtuse triangulation.

2.1 Walking on the Voronoi diagram

Let pgr be an acute (non-obtuse) triangle in a triangu-
lation and pq be its shortest edge. See Figure 2. Let
slab(pq) denote the region between the two lines one go-
ing through p, the other ¢ and both orthogonal to line
segment pq. Let slice(pq) be the intersection of slab(pq)
and the circumcircle of pgr. In the following algorithm,
we suggest to insert a Steiner point strictly inside the
slice region of a non-acute triangle furthest away from
all existing vertices. (For non-obtuse triangulations we
also consider the boundary of the slice as an insertion
region.) Note that this point is either a Voronoi vertex
or on a Voronoi edge. We find it simply by searching a
local neighborhood on the Voronoi diagram.

Figure 2: Point z is inside the slice of pq (shaded) that is
furthest away from all existing vertices.

CCCG 2007, Ottawa, Canada, August 20-22, 2007

2.2 Relocating Steiner points

We propose simple point relocation strategy to be in-
tegrated into the refinement procedure described in the
previous section. The feasibility of this point relocation
is tested before every iteration of a Steiner point inser-
tion. We first recall the definitions of basic structures
in a triangulation. The star of a vertex a consists of all
triangles that contain a. The link of a, then, consists of
all edges of triangles in the star that are disjoint from
a. A vertex is said to be free if it was inserted by the
refinement algorithm as a Steiner point. Input vertices
are not free and never relocated. For each non-acute
(obtuse) triangle, we first attempt to relocate its free
vertices (one-at-a-time). See Figure 3. For a free vertex
a, such a relocation is feasible only if the intersection
of the slabs on the link of a is non-empty. We compute
this intersection and perform a simple search in it. If
one of its free vertices of a triangle find a new location
so that all the triangles in its (new) star become acute
(non-obtuse), we perform the relocation. Otherwise, we
proceed with a new Steiner point insertion.

Algorithm 1
Compute the Delaunay triangulation (DelT'ri)
of the input
Let P denote the maintained point set
while 3 a non-acute triangle pgr in DelTri(P)
relocated := FALSE
for each free vertex a of pgr
if X = mzyelink(a) Slab(xy) 7é @
and 3b € X such that all triangles of star(b)
in the DelTri(P U{b} — {a}) are acute

then
delete a; insert b; relocated:=TRUE; break;
endfor
if relocated == FALSE then

insert a point = € slice(pq) that is furthest
from all existing vertices
endwhile

3 Experimental Study

We tested a preliminary implementation of our algo-
rithm on several data sets. Our results are summarized
in Table 3, and sample output meshes are illustrated
in Figure 4. Histogram of angles for an output sample
is shown in Figure 5. Our implementation is currently
being optimized.

4 Discussions

We present the first heuristic method and the first soft-
ware for computing acute (and non-obtuse) triangula-
tions of two dimensional domains. We leave finding a

Figure 3: A non-acute (obtuse) triangle pga might be fixed
by relocating one of its vertices a. Such a relocation point,
if exists, must be in the intersection region (shaded) of the
slabs of edges on the link of a.

Lake Superior Histogram 2
180

160) |

140 | I I 1
120 | JGAAARAC(]
100 |
80 I

Number of Angles

60
40
20 +

L

0
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Angles
Figure 5: Histogram of all angles in the output triangulation
for input set Lake Superior.

theoretical support for the proposed approach an open
problem. We should note that boundary handling strat-
egy we use is inherited from the standard Delaunay re-
finement algorithms [11]. We believe the performance
of our algorithm will improve once a special boundary
handling rule suited for this problem is integrated into
our software.

References

[1] 1. Babuska and A. Aziz. On the angle condition in
the finite element method. SIAM J. Numer. Analysis
13:214-227, 1976.

[2] B. S. Baker, E. Grosse, and C. S. Rafferty. Nonobtuse
triangulation of polygons. Disc. & Comp. Geometry
3:147-168, 1988.

[8] M. Bern and D. Eppstein. Polynomial-size nonobtuse
triangulation of polygons. Int. J. Comp. Geometry and
Applications 2:241-255, 1992.

19th Canadian Conference on Computational Geometry, 2007

"4

RADAS

X\

\

e

KSR

1
VA

K

¥
E"W(

o7
oK

0
AV

2\
vl
TSR
RO

N aval ' ‘
K 2l 2 KA
L. W SR

=i 74 N O] ‘4
R4
AAV}‘ y X & "‘ i
IS N N]
: R

<
iV
0

30

Pows

Figure 4: Acute triangulations for various input domains.

Data Set Output Time
name |# points | # edges || # points | # triangles | max angle || millisec
Acute 153 153 742 1086 89.597° 761

332 420 90° 168

Superior 522 522 1649 2688 87.994° 5395
1267 1983 90° 3095

Turkey 216 216 2296 4027 89.995° 7771
1880 3314 90° 6687

Florida 304 304 1807 3043 89.998° 9817
1248 1875 90° 1286

Boeing 30 30 188 315 88.978° 945
109 175 90° 577

Random 1004 4 2482 4793 89.89° 5818
2424 4683 90° 5650

plate 65 65 236 357 89.186° 495
216 322 90° 190

Table 1: Performance of the algorithm on different data sets.

[4] M. Bern, D. Eppstein, and J. Gilbert. Provably good
mesh generation. J. Comp. System Sciences 48:384—
409, 1994.

[5] M. Bern, S. Mitchell, and J. Ruppert. Linear-size
nonobtuse triangulation of polygons. Proc. 10th ACM
Symp. Comp. Geometry, 221-230, 1994.

C. Cassidy and G. Lord. A square acutely triangulated.
J. Rec. Math. 13(4):263-268, 1980.

H.Q. Dinh, A.J. Yezzi, G. Turk. Texture transfer during
shape transformation. ACM Trans. Graph. 24(2): 289-
310 2005.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of arbi-
trary meshes. Proc. SIGGRAPH, 178-182, 1995.

D. Eppstein. Faster circle packing with applications
to nonobtuse triangulation. Int. J. Comput. Geometry
Appl. 7(5): 485-492, 1997.

[10] J. Erickson, D. Guoy, J.M. Sullivan, A. Ungér. Build-
ing spacetime meshes over arbitrary spatial domains.
Eng. Comput. (Lond.) 20(4): 842-853, 2005.

[11] H. Erten and A. Ungér. Triangulations with Locally
Optimal Steiner Points. Proc. Eurographics Symp. Ge-
ometry Processing, Barcelona Spain, 2007

[6]
[7

18]

9]

[12] M. Gardner. Mathematical games. Scientific American
202:177-178, 1960.

[13] S. Har-Peled and A. Ungér. A time-optimal Delaunay
refinement algorithm in two dimensions. Proc. ACM
Symp. Comp. Geometry, 228-236,2005.

[14] R. Kimmel and J.A. Sethian. Computing geodesic paths
on manifolds. Proc. of National Academy of Sciences,
95(15):8431-8435, 1998.

[15] H. Lindgren. Geometric dissections.
Princeton, N. J., 1964.

Van Nostrand,

[16] H. Maehara. Acute triangulations of polygons. Proc.
of Japan Conf. on Disc. €& Comp. Geometry, 237-243,
2000. Springer-Verlag, LNCS 2098.

[17] W. Manheimer. Dissecting an obtuse triangle into
acute triangles. American Math. Monthly, 67, 1960.

[18] U. Pinkall and K. Polthier. Computing discrete min-
imal surfaces and their conjugates. Exper. Math.
2(1):15-36, 1993.

[19] J. Ruppert. A new and simple algorithm for quality

2-dimensional mesh generation. Proc. 4th ACM-SIAM
Symp. on Disc. Algorithms, 83-92, 1993.

[20] A. Ungér and A. Sheffer. Pitching tents in space-time:
Mesh generation for discontinuous Galerkin method.
J. of Found. of Computer Science 13(2):201-221, 2002.

