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Straight-line Drawings of Outerplanar Graphs in O(dn log n) Area

Fabrizio Frati

Abstract

We show an algorithm for constructing(dnlogn) area
outerplanar straight-line drawings aefvertex outerplanar
graphs with degreéd. Also, we settle in the negative a con-

and no two edges cross, but, possibly, at common endpoints.
In the following, unless otherwise specified, frawing we
always mean planar straight-line grid drawing. Clearly, a
straight-line drawing of a grap®i is fully determined by the
placement of the vertices @f. The area of a drawing is

jecture [1] on the area requirement of outerplanar graphs by the number of grid points in the smallest rectangle withside

showing that snowflake graphs admit linear area drawings.

1 Introduction

Almost thirty years ago, Leiserson [7] and Dolev and
Trickey [4] independently showed that everyvertex out-
erplanar graph whose degree is bounded bgmits a poly-
line drawing in©(n) area. The techniques presented in [7, 4]
can be modified in order to obtain poly-line drawings of out-
erplanar graphs with degrden O(d?n) area, as pointed out
in [1]. More recently, the problem of obtaining minimum

parallel to the axes that covers the drawing completely .

An embedding of a graphG is an ordering of the edges
incident to each vertex. An embedding@fdetermines its
dual graph that is the graph with one vertex per face®f
and with one edge between two vertices if the corresponding
faces share an edge (. An outerplanar embedding is a
planar embedding of a graph in which all vertices are inci-
dent to the same face, say theernal face. An outerplanar
graphis a graph that admits an outerplanar embedding. The
dual graph of an outerplanar embedded graph is a tree when
not considering the vertex corresponding to the exterrcal.fa

area drawings of outerplanar graphs has been tackled byA maximal outerplanar graph is a graph that admits an out-

Biedl, who in [1] provided arO(nlogn) area upper bound
for poly-line drawings of general outerplanar graphs. More

erplanar embedding in which all faces, but for the external
one, are triangles. The dual graph of a maximal outerplanar

over, she conjectured that there exists a class of outexplan embedded graph is a binary tree.

graphs called “snowflake graphs” requirifign logn) area
in any planar straight-line or poly-line drawing. Conceqi

Thedegree of a vertex is the number of edges incident to
the vertex. Thelegree of a graph is the maximum degree of

straight-line drawings, in [5] Garg and Rusu have shown that one of its vertices.

everyn-vertex outerplanar graph has a straight-line drawing

Let T be a binary tree rooted at node Let T'(v) denote

with O(dn'-*8) area. However, a sub-quadratic area bound the subtree of” rooted at node. Theleftmost path L(T')

has been proved two years ago in [3], where Di Battista and (the rightmost path R(7T')) of T is pathvg, vy, ..

Frati showed that for straight-line drawings of generakout
planar graph®(n!-4®) area always suffices.

In Section 3 we provide an algorithm for obtaining
straight-line drawings of outerplanar graphQfidn log n)

area. Further, in Section 4 we show that snowflake graphs(resp. right) child ofvy, andvy, vs, ..

admit linear area drawings, settling in the negative thevabo

.,V such
thatvy = r, v;11 is the left child (resp. the right child) of;,
Vi such that < 7 < k — 1, andv;,, doesn’t have a left child
(resp. aright child). Theeft-right (right-left) path of a node
v € T'is pathvg, vy, ..., v, such thatyy = v, vy is the left
., v is the rightmost
(resp. leftmost) path df (v1). Consider any drawing of T'.

cited conjecture appeared in [1]. In the same section we give Theleft polygon of the neighbors P, (v) (theright polygon of
conclusions and a conjecture concerning the area require-the neighbors P,.(v)) of a nodev € T is the polygon of the

ment of straight-line drawings of outerplanar graphs.

2 Preliminaries

We assume familiarity with Graph Drawing. For basic defi-
nitions see also [2].
A planar straight-linegrid drawing of a graph is such that

segments representing inthe edges of the left-right (resp.
right-left) path plus a segment connectinganduvy.

A planar straight-line drawingj of a binary tre€l” is star-
shaped if (1) it's order-preserving, i.e. the order of the chil-
dren is the same of one fixed in advance; (2) for each node
veT, P(v) = (v,v1,...,v,) andP.(v) = (v,uq,. .., up)
are simple polygons and each segment; ), with 2 < i <

each vertex is mapped to a point with integer coordinates, & —1 (resp.(v, u;), with 2 < j < p—1), belongs to the inte-
each edge is represented by a segment between its endpointéor of F;(v) (resp.F;(v)), but for its endpoints; (3) for each

*Dipartimento di Informatica e Automazione, UniversitaRbma Tre,
frati @lia.uniroma3.it Work partially supported by MUR under
Project MAINSTREAM Algorithms for Massive Information $irtures
and Data Streams.

pair of nodes,, v, € T, each ofP,(v,) andP.(v,) doesn'’t
intersectP; (vp) and P, (vy), but, possibly, at common end-
points or at common edges; and (4) there exist pgingd

p, from which it's possible to draw edges to each node of
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L(T) and to each node a®(T"), respectively, and to draw
edge(p;, pr), without creating crossings with the edged of
Let& be an outerplanar embedding of a maximal outerpla-
nar graphG and letI” be the dual binary tree &f. Select any
edge(u;, u,) on the external face &f and root! at the inter-
nal face containingu;, u,.). We call vertices;; andu,. poles
of G and we also calinternal subgraph the graph obtained
by deletingu;, u,- and their incident edges frof.
In [3] the straight-line drawability of an-vertex outerpla-
nar graphGG was strictly related to the “star-shaped” drawa-
bility of its dual treeT", by means of the following lemma:

Lemmal [3] If T admitsa star-shaped drawing with f(n)
area, then G hasan outerplanar straight-line drawing where
the area of the drawing of itsinternal subgraphis f(n).

The proof of the previous lemma is based on a bijection
that can be established between the nodés and the ver-
tices of G, but for its poles. Such a bijection allows to draw
G by augmenting the star-shaped drawingofvith two ex-
tra points (representing the poles@j and with some extra
straight-line edges. Hence, in a star-shaped drawing of
with areaf(n), it is sufficient to guarantee a placement for
the poles of7 not asymptoatically increasing(n) to be able
to construct a drawing af in O(f(n)) area.

3 The algorithm

The outline of the algorithm is as follows: (i) augment the
input outerplanar graptr to a maximal outerplanar graph
G’; (i) select any edgéu;, u,.) on the external face of the
outerplanar embeddingof G’ and root the dual binary tree
T of £ at the internal face of £ containing(u;, u,-); con-
struct a star-shaped drawitigof T; (iii) insert the poles of
G’ and the edges that are needed to augrfiénta drawing
IV of G’; (iv) remove the dummy edges inserted in the first
step to obtain a drawing aF.

Step (i) can be performed by means of the algorithm de-
scribed in [6], where it is shown that an outerplanar graph

The drawing is constructed to satisfy the visibility projes

of a star-shaped drawing. In particular, the leftmost ard th
rightmost path ofl" (and of any subtree recursively drawn)
are placed on the lowest line intersecting the drawing.

Denote byh; and hy the horizontal grid lines delimit-
ing H with h; abovehs at a vertical distance that will be
determined later. Thed + 1 horizontal grid lines above
hy (resp. belowhs), that compose the upper part (resp.
the lower part) of the drawing are labeled, us, . . ., ugq11
(resp.ly, o, . .., lsqr1) from the lowest to the highest (resp.
from the highest to the lowest). All nodes 6{T") and of
R(T) lie onlygy.

AssumeT is rooted at any node of degree at mos2.
Select a patht = (vg,v1,...,vy,) in T, calledspine, such
that (a)vg = r, (b) for1 < i < k, v; is root of the subtree
with the greatest number of nodes among the subtrees rooted
at children ofv;,_;, and (c)v,, is a leaf. The nodes df
belonging (not belonging) t&' are spine nodes (non-spine
nodes). We callleft edge (right edge) an edge(v;_1, v;) of
S such that; is the left (right) child ofv;_; in S.

Path S is subdivided into subpaths, based on the alter-
nance between left and right edges that comp$se It-
eratively subdivideS in pathsSy, Si,...,S5,, so that, for
0<j<¢q8; = (vi,vi_‘_l,...,vlj,vlj+1,...,v}_1,v}) is
defined as follows? = v, and, forl < j < ¢, v} is the
node aften} " in S. Suppose thay, v, , ) is a right edge.
Letv] be the first node after] in S such thatv/, v/, ) isa
leftedge. If(v/, |, v/, ,) is aleft edge (right edge) then le}
be the first node after] in 5 such that(v}, v},) is a right
(resp. left) edge. Now suppose tltaf, v; , , ) is a left edge.
Letv] be the first node after] in S such thatv], v/, ) isa
right edge. If(v], ,,v],,) is a right edge (left edge) then let
v’ be the first node after! in S such thatv}, v} ) is aleft
(resp. right) edge. Notice thé‘g? could have no vertey/ or
vj{. if the spine ends before a left edge or a right edge is en-
counteredT is also subdivided in subtrees: FbK j < ¢,

can be augmented to maximal by inserting dummy edges that’ i the subtree of” induced by the nodes ifi; and the

do not asymptotically alter the degree of the graph.

Now we describe how to construct a star-shaped drawing

I' of T. The outline of such a construction is as follows. A
path.S is removed fronil’, together with the edges incident

to the vertices of. The subtrees that are disconnected from
the removal ofS are recursively drawn. Pathi is chosen

nodes in the subtrees rooted at non-spine nodes children of
spine nodes ir$);.

Now we show how to construct a drawirdg of each
T;, for 0 < j < ¢. We distinguish eight cases, based on
whether (i); is even (Cases 1-2-3-4) or odd (Cases 5-6-7-8),
(i) (v, vy,,) is aright edge (Cases 1-2-5-6) or a left edge

so that each one of such subtrees is “small”, that is, has at(Cases 3-4-7-8); and (iii()vfﬂ,vfw) is a right edge (Cases

mostn/2 nodes. The drawings of the recursively drawn sub-
trees are horizontally aligned, namely they are all comtzin
in an horizontal stripf. The vertical extension of such a
strip is given by the height of the highest drawing of a sub-
tree recursively drawn. The nodes®fre drawn in theip-

per part and in thelower part of the drawing, that is, in the
4d+ 1 horizontal grid lines above and beld#, respectively.

In particular,S is partitioned in subpaths, and each subpath
“cuts” H, that s, is drawn in part above and in part belBw

1-3-5-7) or a left edge (Cases 2-4-6-8). In the cases in which
Jj is even, drawL(T;) and R(T;) on 2441 SO that the each
node ofL(T;) (of R(T})) is one unit to the right (to the left)

of its left (right) child. In the cases in whichis odd, draw
L(T;) and R(T};) onugq+1 SO that the each node éf(7})

(of R(T3)) is one unit to the left (to the right) of its left (right)
child. Denote by, the vertical grid line passing through,

and denote by 1, hito, hy—1, @andh;_o the vertical grid
lines one unit to the right, two units to the right, one unit to
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Figure 1: Thick segments represent the edges. dfeft (right) edges are labeled byresp. byr).

the left, and two units to the left df;, respectively.

Case 1. (see Fig. 1) Dravw} at the intersection between
hi11 and usgyo; draw R(T(v})) on h;y1, with any node

one unit above its right child. Dr w;_l at the intersec-

tion betweenh;_» anduaqs1. Draw R(T (v}, ,)) till ”;71
on h;_», with any node one unit below its right child; draw
L(T'(v{,,)) on h;_», with any node one unit above its left
child.

Case 2. Draw vj; at the intersection betweén_, and

Ugq+1; draw L(T(v})) on h;_q, with any node one unit
above its left child. Draw;j;_l at the intersection between
hiy1 anduggyo. Draw L(T(v],,)) till v}_; onhyq, with

any node one unit below its left child,; draR/(T(v{+1)) on
hi1, with any node one unit above its right child.
Case 3. Draw v} at the intersection between, and

U2d+2; draw R(T(v})) on h;y2, with any node one unit
above its right child. Draw;}_1 at the intersection between
hi—1 anduggy1. Draw R(T(v], ) till v}_, onh,_y, with

any node one unit below its right child; draEl\(T(v{+1)) on
h;—1, with any node one unit above its left child.
Case 4. (see Fig. 1) Draw;} at the intersection between

hi—1 andugg.1; draWL(T(v;)) onh;_1, with any node one
unit above its left child. Draijt1 at the intersection be-
tweenhy 2 andusq2. Draw L(T'(v}, ) till v}_l onhiya,

with any node one unit below its left child; draﬂ(T(ufﬂ))
onh;42, with any node one unit above its right child.
Case 5. (see Fig. 1) Dravw} at the intersection between

hi—1 andlggyq; drawR(T(v})) on h;_1, with any node one
unit below its right child. Drawv’_, at the intersection
betweenhy» andlzq 2. Draw R(T(v],,)) on hyyo, with

any node one unit above its right child; dra(v(/]"(vfﬂ)) on
hi12, with any node one unit below its left child.
Case 6. Draw v} at the intersection betweén., and

logi2; draWL(T(v})) onhy, o, with any node one unit below

its left child. Dram;j}f1 at the intersection betweén_
andlqy 1. Draw L(T(U{H)) on h;_1, with any node one
unit above its left child; dravR(T(fo)) onh;_q, with any
node one unit below its right child.

Case 7. Draw vj; at the intersection betweén_, and
lyd+1; drawR(T(v})) on h;_o, with any node one unit be-
low its right child. Dranj;_l at the intersection between
hi41 andusqio. Draw R(T(v],,)) onhyy1, with any node
one unit above its right child; draW(T(v{H)) onhyy1, with
any node one unit below its left child.

Case 8. Draw v} at the intersection between; and
logo; drawL(T(v})) onh;1, with any node one unit below
its left child. Drang;_1 at the intersection betweér_»,
andlyq41. Draw L(T(ufﬂ)) on h;_,, with any node one
unit above its left child; drawR(T(fo)) on h;_o, with any
node one unit below its right child.

In Ty shift the nodes ofL.(T;) and R(Ty) vertically, so
that they keep the samecoordinates and lie on lingg ;.

For eachT}, with 0 < j < ¢, recursively construct a
drawing of each subtree rooted at a nod€’pthat has not
been already drawn and that is child of a nod&pthat has
been already drawn. Lét,,,, be the maximum between the
heights of the drawings of the subtrees recursively drawn.
Set the distance betweén andh, to beh,,,,, — 1, that is
H consists ofi,,, ., horizontal grid lines.

For eachT;, with 0 < j < ¢ andj even, consider the
drawings of the subtrees rooted at non-already drawn nodes
of T; that are children of nodes belonging I4T}) or to
R(T;), and whose parents are placed to the right (to the left)
of vlj. Place such drawings in the left-right order induced by
the order of their parents dggy; or onlsgy1, at one unit
of horizontal distance between them, with the leftmostdres
rightmost) vertical line intersecting the leftmost (resght-
most) drawing one unit to the right (resp. to the left) of the
last node ofR(T;) (resp. ofL(T})), and with their leftmost
and rightmost paths oh;. Then, consider the drawings of
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Figure 2: (a) A maximal outerplanar graphwith n = 34 vertices and degreé= 6. The poles of~ are labeled by;; andu,..
(b) The dual binary tre& of G. Edges labeledl(r) are between a node and its left (right) child. Thick edgesstie spineS
selected by the algorithm described3ection 3. Red, green, and blue vertices show subpaths,, andS; of S, respectively.
Cases 2, 8, and 1 have to be applied to d&awS:, and.S,, respectively. (c) The star shaped drawihgf T constructed by
the algorithm shown irgection 3. (d) The outerplanar drawing @f obtained by augmenting with the poles ofG and with
extra edges.

the subtrees rooted at non-already drawn nod&3 tfat are eratively adding’’;, for j = 1,...,m, so that the leftmost
children of nodes already drawn. Rotate such drawings of vertical line intersecting’; is one unit to the right of the
radiants and place them so tHAT;) andR(T}) lie onhg, SO rightmost vertical line intersecting; _;.

that the drawings of the subtrees rooted at children of nodes
drawn onh;, 1 Oor onh;;o (ONh;_1 Or onh;_5) are placed to

the right (resp. to the left) of the drawing constructed up to
now, at one unit of horizontal distance in the order induced
by their parents irl.(T'(v, ,)) orin R(T'(v{,)). If j is odd,

a drawingl’; of T; can be constructed analogously.

The constructed drawirigof T' is star-shaped (see the ap-
pendix). Let's analyze the area requirement'ofThe width
of T is trivially O(n). The height ofl" is the sum of the
heights ofH, of the upper part, and of the lower partlof
The height ofH is equal to the height of the highest subtree
of T recursively drawn; by definition o, each subtree re-
Now place all the;’s together, starting fron'y, and it- cursively drawn has at most/2 nodes. Denoting by (n)
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the maximum height of a drawing of annodes tred" con-
structed by the algorithm, we getl (n) = (4d+1) + (4d +
1)+ H(n/2) =0(d) + H(n/2) = O(dlogn).

Place the poles of’ both on the horizontal line one unit
belowwy, so that they are at a distance of one horizontal unit,
and so that one pole is on the same vertical line;oNotice
that this placement doesn’t asymptotically increase tlea ar
of I. Finally, the edges necessary to augniéeirt a drawing
of G’ can be inserted and the dummy edges inserted in the
first step can be removed obtaining a drawing-ofFigure 2
shows an example of application of the algorithm described
in this section.

Theorem 2 Any n-vertex outerplanar graph of degree d has
a straight-line outerplanar drawing in O(dn logn) area.

Straightforwardly, we obtain the following:

Corollary 3 Any n-vertex outerplanar graph with constant
degree hasa straight-line outerplanar drawingin O(n logn)
area.

4 Conclusions and Conjectures

In this paper we have shown th@tdn log n) area is always
achievable for straight-line drawings of outerplanar gnap

In [1] Biedl conjectured arf2(nlogn) lower bound on
the area requirement of straight-line and poly-line draw-
ings of outerplanar graphs. More precisely, she exhibited
a class of outerplanar graphs, the “snowflake graphs” shown
in Fig. 3.a, for which she claimed:

N NI
@ (b) ©

Figure 3: (a) A snowflake graph. (b) A snowflake graph sub-
divided in three complete outerplanar graphs. (c) Drawing
snowflake graphs in linear area. The shaded regions cor-
respond to the three copies of the drawing of the internal

subgraph of a complete outerplanar graph constructed by theg4]

algorithmin [3].

ConjectureA [1] Any poly-line drawing of the snowflake
graph has)(nlogn) area.

It can be observed that amvertex snowflake graph is
composed of three identic&(n)-vertex complete outer-
planar graphs (see Fig. 3.b), defined in [3] as the outerpla-
nar graphs whose dual graphs are complete binary trees
For complete outerplanar graphs @,/n) x O(y/n) area

straight-line drawing algorithm has been presented in [3].
Such an algorithm constructs drawings in which the vertices
of the internal subgraph that are connected to the poles lie
on two half-lined; andi; with a common endpoint and with
slopes—n/4 andnw/4. The entire drawing of the internal
subgraph lies in the wedge with angi¢2 delimited by,
andl,. Hence, considering three copies of the drawing of
the internal subgraph of a complete outerplanar graph con-
structed by the algorithm in [3], rotating them @f =, and
3w /2, respectively, placing the drawings together, and insert-
ing the three vertices that are poles for the three complete
outerplanar graphs, af(y/n) x O(y/n) area straight-line
drawing of a snowflake graph can be obtained (see Fig. 3.c).
We would like to point up that all known algorithms for
constructing straight-line drawings of general outerptan
graphs try to minimize the extension of the drawing in only
one coordinate dimension, while allowing the other dimen-
sion to beO(n). However, we believe thad(nlogn) area
cannot be achieved by squeezing the drawing in only one di-
mension, and that hence a compaction in both dimensions
(or a proof that one dimension $(n)) should be pursued.

Conjecturel There exist n-vertex outerplanar graphs that
in any straight-line drawing in which one dimensionis O(n)
require w(logn) in the other dimension.

We notice that there exist outerplanar graphs such that
both the width and the height of any grid drawing are
Q(logn) (e.g., outerplanar graphs containing a complete bi-
nary tree as a subgraph).
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Appendix: Proof of Star-Shaped Visibility

We show that, given a rooted binary trée dual of a max-
imal outerplanar grapld-, the algorithm described in Sec-
tion 3 constructs a star-shaped drawihgf 7.

First, observe that the claim that all subtrees recursively
drawn are contained insidd holds, since the distance be-
tweenh; andhs is set equal to the height of the highest sub-
tree recursively drawn.

Further, all nodes directly drawn are in the upper and
lower part ofl". Namely, we have that: (i) by construction
such nodes are never placed aboayg,; or belowl,,,, and
(ii) if such nodes are placed if, then it's easy to deduce
by the construction that there exists a leftmost or a rigistmo
path of a subtree df' whose length is greater thal how-
ever, this would imply that there exists a vertex®fvhose
degree is greater thah since all the nodes of a leftmost or
rightmost path of a subtree @f are neighbors of the same
node ofG (see also [3])

I" satisfies property (i) of a star-shaped drawing by con-
struction. Concerning property (iv],(T") and R(T) lie on
the bottommost liné, ;11 intersecting’. Hence, placing the
polesu; andu, of G one unit belowl,,., allows to draw
edges from; andu, to the nodes ofL.(T") andR(T") without
creating crossings witl’. Now we analyze properties (ii)
and (iii) of a star-shaped drawing. For every nadging in
the upper or in the lower part @f, all nodes ofP;(v) and of
P.(v) are placed either ohy, or onhs, or in the upper, or
in the lower part ofl". This allows to verify that properties
(i) and (iii) of a star-shaped drawing are satisfiedIbgep-
arately for each recursive step of the algorithm. Consider a
subtreeT; of T', as defined in Section 3. For each nadef
T; different fromo]_, v7, jc 1» andv’,, one betweer, (v)
andP (v) has nodes placed either all &q or all onhs, but
for v (see Fig. 4.a); the other one betweRifv) and P, (v)
has one node placed on the same horizontal or vertical line
of v and the other nodes either all én or all on hy (see
Fig. 4.b). Hence, straight-lines can be drawn frono the
nodes ofF; (v) and of P,.(v) without creating crossings in.
Concerningv]_, (v]) one between?, (v;_,) and P,.(v]_,)
(resp. one betweeﬁl(vl) andP,(v})) has nodes all oh,
or all onhs, but forv!_, (resp. butfory_, and its child that
lies on the same horizontal line of ,) and the other one
betweenP,(v;_,) and P.(v]_,) (resp. betweer(v}) and
Pr(vlj)) is a convex polygonal line (see Figs. 4.c and 4.d).
Hence, straight-lines can be drawn frath , (from v/) to
the nodes of?; (v]_,) and of P,.(v]_,) (resp. ofP;(v]) and
of P. (vl )) without creating crossings in. Fmally, consider
nodess}_, andv}. One out ofv’}_, andv}, sayw, is placed
ON Ugq+1 OF ONlgqy1, While the other one say, is placed
ON ug442 OF ONlag42. One betweerP;(v) and P.(v) has
nodes all om; or all on ks, but for, while the other one
has nodes all ofag4 1 Oronisgy 1. TO prove that is visible
from the nodes of?,(v) and P,.(v), observe that the slope

of the edge connectingto v”l is less than the one of the
edge connectingto © (see Flg 4.e). Namely, the horizontal
(vertical) distance betweenandv, s at leastl (is exactly
2d), while the horizontal (vert|cal) distance betweaeand®

is exactly3 (is exactly2d — 1), and so the slope @b, vj“)

is less or equal tha®, while the one of v, 9) is 241, We
have that? < 2¢-L if and only ifd > 2 thatis always satis-
fied considering maX|maI outerplanar graphs with more than
3 vertices. Hence, straight-lines can be drawn fioto the
nodes ofP, (v) and of P.(v) without creating crossings in.
Concerning’, the nodes of one betweéh(v) andP..(v) lie

all on hq, or all onhs, but foro and eventually for its child
that lies on the same vertical line ©f The nodes of the other
one betwee®, (9) andP,(9) lie all onugg1 or all onlagq,
but for v and eventually fop, that we have already proved to
be visible fromo. Hence, straight-lines can be drawn frém
to the nodes oP,(¢) and of P.(¢) without creating crossings
inT (see Fig. 4.).
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Figure 4: lllustrations for the proof of star-shaped viii
of the drawings constructed by the algorithnSattion 3.



