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Straight-line Drawings of Outerplanar Graphs in O(dn log n) Area

Fabrizio Frati∗

Abstract

We show an algorithm for constructingO(dn log n) area
outerplanar straight-line drawings ofn-vertex outerplanar
graphs with degreed. Also, we settle in the negative a con-
jecture [1] on the area requirement of outerplanar graphs by
showing that snowflake graphs admit linear area drawings.

1 Introduction

Almost thirty years ago, Leiserson [7] and Dolev and
Trickey [4] independently showed that everyn-vertex out-
erplanar graph whose degree is bounded by4 admits a poly-
line drawing inΘ(n) area. The techniques presented in [7, 4]
can be modified in order to obtain poly-line drawings of out-
erplanar graphs with degreed in O(d2n) area, as pointed out
in [1]. More recently, the problem of obtaining minimum
area drawings of outerplanar graphs has been tackled by
Biedl, who in [1] provided anO(n log n) area upper bound
for poly-line drawings of general outerplanar graphs. More-
over, she conjectured that there exists a class of outerplanar
graphs called “snowflake graphs” requiringΩ(n log n) area
in any planar straight-line or poly-line drawing. Concerning
straight-line drawings, in [5] Garg and Rusu have shown that
everyn-vertex outerplanar graph has a straight-line drawing
with O(dn1.48) area. However, a sub-quadratic area bound
has been proved two years ago in [3], where Di Battista and
Frati showed that for straight-line drawings of general outer-
planar graphsO(n1.48) area always suffices.

In Section 3 we provide an algorithm for obtaining
straight-line drawings of outerplanar graphs inO(dn log n)
area. Further, in Section 4 we show that snowflake graphs
admit linear area drawings, settling in the negative the above
cited conjecture appeared in [1]. In the same section we give
conclusions and a conjecture concerning the area require-
ment of straight-line drawings of outerplanar graphs.

2 Preliminaries

We assume familiarity with Graph Drawing. For basic defi-
nitions see also [2].

A planar straight-line grid drawing of a graph is such that
each vertex is mapped to a point with integer coordinates,
each edge is represented by a segment between its endpoints
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and no two edges cross, but, possibly, at common endpoints.
In the following, unless otherwise specified, fordrawing we
always mean planar straight-line grid drawing. Clearly, a
straight-line drawing of a graphG is fully determined by the
placement of the vertices ofG. The area of a drawing is
the number of grid points in the smallest rectangle with sides
parallel to the axes that covers the drawing completely .

An embedding of a graphG is an ordering of the edges
incident to each vertex. An embedding ofG determines its
dual graph that is the graph with one vertex per face ofG
and with one edge between two vertices if the corresponding
faces share an edge inG. An outerplanar embedding is a
planar embedding of a graph in which all vertices are inci-
dent to the same face, say theexternal face. An outerplanar
graph is a graph that admits an outerplanar embedding. The
dual graph of an outerplanar embedded graph is a tree when
not considering the vertex corresponding to the external face.
A maximal outerplanar graph is a graph that admits an out-
erplanar embedding in which all faces, but for the external
one, are triangles. The dual graph of a maximal outerplanar
embedded graph is a binary tree.

Thedegree of a vertex is the number of edges incident to
the vertex. Thedegree of a graph is the maximum degree of
one of its vertices.

Let T be a binary tree rooted at noder. Let T (v) denote
the subtree ofT rooted at nodev. The leftmost path L(T )
(the rightmost path R(T )) of T is pathv0, v1, . . . , vk such
thatv0 = r, vi+1 is the left child (resp. the right child) ofvi,
∀i such that0 ≤ i ≤ k − 1, andvk doesn’t have a left child
(resp. a right child). Theleft-right (right-left) path of a node
v ∈ T is pathv0, v1, . . . , vk such thatv0 = v, v1 is the left
(resp. right) child ofv0, andv1, v2, . . . , vk is the rightmost
(resp. leftmost) path ofT (v1). Consider any drawingΓ of T .
Theleft polygon of the neighbors Pl(v) (theright polygon of
the neighbors Pr(v)) of a nodev ∈ T is the polygon of the
segments representing inΓ the edges of the left-right (resp.
right-left) path plus a segment connectingvk andv0.

A planar straight-line drawingΓ of a binary treeT is star-
shaped if (1) it’s order-preserving, i.e. the order of the chil-
dren is the same of one fixed in advance; (2) for each node
v ∈ T , Pl(v) = (v, v1, . . . , vk) andPr(v) = (v, u1, . . . , up)
are simple polygons and each segment(v, vi), with 2 ≤ i ≤
k−1 (resp.(v, uj), with 2 ≤ j ≤ p−1), belongs to the inte-
rior of Pl(v) (resp.Pr(v)), but for its endpoints; (3) for each
pair of nodesva, vb ∈ T , each ofPl(va) andPr(va) doesn’t
intersectPl(vb) andPr(vb), but, possibly, at common end-
points or at common edges; and (4) there exist pointspl and
pr from which it’s possible to draw edges to each node of
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L(T ) and to each node ofR(T ), respectively, and to draw
edge(pl, pr), without creating crossings with the edges ofΓ.

LetE be an outerplanar embedding of a maximal outerpla-
nar graphG and letT be the dual binary tree ofE . Select any
edge(ul, ur) on the external face ofE and rootT at the inter-
nal face containing(ul, ur). We call verticesul andur poles
of G and we also callinternal subgraph the graph obtained
by deletingul, ur and their incident edges fromG.

In [3] the straight-line drawability of ann-vertex outerpla-
nar graphG was strictly related to the “star-shaped” drawa-
bility of its dual treeT , by means of the following lemma:

Lemma 1 [3] If T admits a star-shaped drawing with f(n)
area, then G has an outerplanar straight-line drawing where
the area of the drawing of its internal subgraph is f(n).

The proof of the previous lemma is based on a bijection
that can be established between the nodes ofT and the ver-
tices ofG, but for its poles. Such a bijection allows to draw
G by augmenting the star-shaped drawing ofT with two ex-
tra points (representing the poles ofG) and with some extra
straight-line edges. Hence, in a star-shaped drawing ofT
with areaf(n), it is sufficient to guarantee a placement for
the poles ofG not asymptotically increasingf(n) to be able
to construct a drawing ofG in O(f(n)) area.

3 The algorithm

The outline of the algorithm is as follows: (i) augment the
input outerplanar graphG to a maximal outerplanar graph
G′; (ii) select any edge(ul, ur) on the external face of the
outerplanar embeddingE of G′ and root the dual binary tree
T of E at the internal facer of E containing(ul, ur); con-
struct a star-shaped drawingΓ of T ; (iii) insert the poles of
G′ and the edges that are needed to augmentΓ in a drawing
Γ′ of G′; (iv) remove the dummy edges inserted in the first
step to obtain a drawing ofG.

Step (i) can be performed by means of the algorithm de-
scribed in [6], where it is shown that an outerplanar graph
can be augmented to maximal by inserting dummy edges that
do not asymptotically alter the degree of the graph.

Now we describe how to construct a star-shaped drawing
Γ of T . The outline of such a construction is as follows. A
pathS is removed fromT , together with the edges incident
to the vertices ofS. The subtrees that are disconnected from
the removal ofS are recursively drawn. PathS is chosen
so that each one of such subtrees is “small”, that is, has at
mostn/2 nodes. The drawings of the recursively drawn sub-
trees are horizontally aligned, namely they are all contained
in an horizontal stripH . The vertical extension of such a
strip is given by the height of the highest drawing of a sub-
tree recursively drawn. The nodes ofS are drawn in theup-
per part and in thelower part of the drawing, that is, in the
4d+1 horizontal grid lines above and belowH , respectively.
In particular,S is partitioned in subpaths, and each subpath
“cuts” H , that is, is drawn in part above and in part belowH .

The drawing is constructed to satisfy the visibility properties
of a star-shaped drawing. In particular, the leftmost and the
rightmost path ofT (and of any subtree recursively drawn)
are placed on the lowest line intersecting the drawing.

Denote byh1 and h2 the horizontal grid lines delimit-
ing H with h1 aboveh2 at a vertical distance that will be
determined later. The4d + 1 horizontal grid lines above
h1 (resp. belowh2), that compose the upper part (resp.
the lower part) of the drawing are labeledu1, u2, . . . , u4d+1

(resp.l1, l2, . . . , l4d+1) from the lowest to the highest (resp.
from the highest to the lowest). All nodes ofL(T ) and of
R(T ) lie on l4d+1.

AssumeT is rooted at any noder of degree at most2.
Select a pathS = (v0, v1, . . . , vm) in T , calledspine, such
that (a)v0 = r, (b) for 1 ≤ i ≤ k, vi is root of the subtree
with the greatest number of nodes among the subtrees rooted
at children ofvi−1, and (c)vm is a leaf. The nodes ofT
belonging (not belonging) toS arespine nodes (non-spine
nodes). We call left edge (right edge) an edge(vi−1, vi) of
S such thatvi is the left (right) child ofvi−1 in S.

PathS is subdivided into subpaths, based on the alter-
nance between left and right edges that composeS. It-
eratively subdivideS in pathsS0, S1, . . . , Sq, so that, for
0 ≤ j ≤ q, Sj = (vj

k, vj
k+1

, . . . , vj
l , v

j
l+1

, . . . , vj
f−1

, vj
f ) is

defined as follows:v0
k = v0, and, for1 ≤ j ≤ q, vj

k is the
node aftervj−1

f in S. Suppose that(vj
k, vj

k+1
) is a right edge.

Let vj
l be the first node aftervj

k in S such that(vj
l , v

j
l+1

) is a

left edge. If(vj
l+1

, vj
l+2

) is a left edge (right edge) then letvj
f

be the first node aftervj
l in S such that(vj

f , vj
f+1

) is a right

(resp. left) edge. Now suppose that(vj
k, vj

k+1
) is a left edge.

Let vj
l be the first node aftervj

k in S such that(vj
l , v

j
l+1

) is a

right edge. If(vj
l+1

, vj
l+2

) is a right edge (left edge) then let

vj
f be the first node aftervj

l in S such that(vj
f , vj

f+1
) is a left

(resp. right) edge. Notice thatSq
j could have no vertexvq

l or
vq

f if the spine ends before a left edge or a right edge is en-
countered.T is also subdivided in subtrees: For0 ≤ j ≤ q,
Tj is the subtree ofT induced by the nodes inSj and the
nodes in the subtrees rooted at non-spine nodes children of
spine nodes inSj .

Now we show how to construct a drawingΓj of each
Tj, for 0 ≤ j ≤ q. We distinguish eight cases, based on
whether (i)j is even (Cases 1-2-3-4) or odd (Cases 5-6-7-8);
(ii) (vj

k, vj
k+1

) is a right edge (Cases 1-2-5-6) or a left edge

(Cases 3-4-7-8); and (iii)(vj
l+1

, vj
l+2

) is a right edge (Cases
1-3-5-7) or a left edge (Cases 2-4-6-8). In the cases in which
j is even, drawL(Tj) andR(Tj) on l2d+1 so that the each
node ofL(Tj) (of R(Tj)) is one unit to the right (to the left)
of its left (right) child. In the cases in whichj is odd, draw
L(Tj) andR(Tj) on u2d+1 so that the each node ofL(Tj)
(of R(Tj)) is one unit to the left (to the right) of its left (right)
child. Denote byhl the vertical grid line passing throughvl,
and denote byhl+1, hl+2, hl−1, andhl−2 the vertical grid
lines one unit to the right, two units to the right, one unit to
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Figure 1: Thick segments represent the edges ofS. Left (right) edges are labeled byl (resp. byr).

the left, and two units to the left ofhl, respectively.
Case 1. (see Fig. 1) Drawvj

f at the intersection between

hl+1 and u2d+2; draw R(T (vj
f )) on hl+1, with any node

one unit above its right child. Drawvj
f−1

at the intersec-

tion betweenhl−2 andu4d+1. Draw R(T (vj
l+1

)) till vj
f−1

on hl−2, with any node one unit below its right child; draw
L(T (vj

l+1
)) on hl−2, with any node one unit above its left

child.
Case 2. Draw vj

f at the intersection betweenhl−2 and

u4d+1; draw L(T (vj
f )) on hl−2, with any node one unit

above its left child. Drawvj
f−1

at the intersection between

hl+1 andu2d+2. Draw L(T (vj
l+1

)) till vj
f−1

on hl+1, with

any node one unit below its left child; drawR(T (vj
l+1

)) on
hl+1, with any node one unit above its right child.

Case 3. Draw vj
f at the intersection betweenhl+2 and

u2d+2; draw R(T (vj
f)) on hl+2, with any node one unit

above its right child. Drawvj
f−1

at the intersection between

hl−1 andu4d+1. DrawR(T (vj
l+1

)) till vj
f−1

on hl−1, with

any node one unit below its right child; drawL(T (vj
l+1

)) on
hl−1, with any node one unit above its left child.

Case 4. (see Fig. 1) Drawvj
f at the intersection between

hl−1 andu4d+1; drawL(T (vj
f)) onhl−1, with any node one

unit above its left child. Drawvj
f−1

at the intersection be-

tweenhl+2 andu2d+2. DrawL(T (vj
l+1

)) till vj
f−1

onhl+2,

with any node one unit below its left child; drawR(T (vj
l+1

))
onhl+2, with any node one unit above its right child.

Case 5. (see Fig. 1) Drawvj
f at the intersection between

hl−1 andl4d+1; drawR(T (vj
f)) onhl−1, with any node one

unit below its right child. Drawvj
f−1

at the intersection

betweenhl+2 and l2d+2. Draw R(T (vj
l+1

)) on hl+2, with

any node one unit above its right child; drawL(T (vj
l+1

)) on
hl+2, with any node one unit below its left child.

Case 6. Draw vj
f at the intersection betweenhl+2 and

l2d+2; drawL(T (vj
f )) onhl+2, with any node one unit below

its left child. Drawvj
f−1

at the intersection betweenhl−1

and l4d+1. Draw L(T (vj
l+1

)) on hl−1, with any node one

unit above its left child; drawR(T (vj
l+1

)) onhl−1, with any
node one unit below its right child.

Case 7. Draw vj
f at the intersection betweenhl−2 and

l4d+1; drawR(T (vj
f)) on hl−2, with any node one unit be-

low its right child. Drawvj
f−1

at the intersection between

hl+1 andu2d+2. DrawR(T (vj
l+1

)) on hl+1, with any node

one unit above its right child; drawL(T (vj
l+1

)) onhl+1, with
any node one unit below its left child.

Case 8. Draw vj
f at the intersection betweenhl+1 and

l2d+2; drawL(T (vj
f)) onhl+1, with any node one unit below

its left child. Drawvj
f−1

at the intersection betweenhl−2

and l4d+1. Draw L(T (vj
l+1

)) on hl−2, with any node one

unit above its left child; drawR(T (vj
l+1

)) onhl−2, with any
node one unit below its right child.

In Γ0 shift the nodes ofL(T0) andR(T0) vertically, so
that they keep the samex-coordinates and lie on linel4d+1.

For eachTj , with 0 ≤ j ≤ q, recursively construct a
drawing of each subtree rooted at a node ofTj that has not
been already drawn and that is child of a node ofTj that has
been already drawn. Lethmax be the maximum between the
heights of the drawings of the subtrees recursively drawn.
Set the distance betweenh1 andh2 to behmax − 1, that is
H consists ofhmax horizontal grid lines.

For eachTj, with 0 ≤ j ≤ q and j even, consider the
drawings of the subtrees rooted at non-already drawn nodes
of Tj that are children of nodes belonging toL(Tj) or to
R(Tj), and whose parents are placed to the right (to the left)
of vj

l . Place such drawings in the left-right order induced by
the order of their parents onl4d+1 or on l2d+1, at one unit
of horizontal distance between them, with the leftmost (resp.
rightmost) vertical line intersecting the leftmost (resp.right-
most) drawing one unit to the right (resp. to the left) of the
last node ofR(Tj) (resp. ofL(Tj)), and with their leftmost
and rightmost paths onh1. Then, consider the drawings of
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Figure 2: (a) A maximal outerplanar graphG with n = 34 vertices and degreed = 6. The poles ofG are labeled byul andur.
(b) The dual binary treeT of G. Edges labeledl (r) are between a node and its left (right) child. Thick edges show the spineS
selected by the algorithm described inSection 3. Red, green, and blue vertices show subpathsS0, S1, andS2 of S, respectively.
Cases 2, 8, and 1 have to be applied to drawS0, S1, andS2, respectively. (c) The star shaped drawingΓ of T constructed by
the algorithm shown inSection 3. (d) The outerplanar drawing ofG obtained by augmentingΓ with the poles ofG and with
extra edges.

the subtrees rooted at non-already drawn nodes ofTj that are
children of nodes already drawn. Rotate such drawings ofπ
radiants and place them so thatL(Tj) andR(Tj) lie onh2, so
that the drawings of the subtrees rooted at children of nodes
drawn onhl+1 or onhl+2 (onhl−1 or onhl−2) are placed to
the right (resp. to the left) of the drawing constructed up to
now, at one unit of horizontal distance in the order induced
by their parents inL(T (vj

l+1
)) or in R(T (vj

l+1
)). If j is odd,

a drawingΓj of Tj can be constructed analogously.

Now place all theΓj ’s together, starting fromΓ0, and it-

eratively addingΓj , for j = 1, . . . , m, so that the leftmost
vertical line intersectingΓj is one unit to the right of the
rightmost vertical line intersectingΓj−1.

The constructed drawingΓ of T is star-shaped (see the ap-
pendix). Let’s analyze the area requirement ofΓ. The width
of Γ is trivially O(n). The height ofΓ is the sum of the
heights ofH , of the upper part, and of the lower part ofΓ.
The height ofH is equal to the height of the highest subtree
of T recursively drawn; by definition ofS, each subtree re-
cursively drawn has at mostn/2 nodes. Denoting byH(n)
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the maximum height of a drawing of ann-nodes treeT con-
structed by the algorithm, we get:H(n) = (4d+1)+ (4d+
1) + H(n/2) = O(d) + H(n/2) = O(d log n).

Place the poles ofG′ both on the horizontal line one unit
belowv0, so that they are at a distance of one horizontal unit,
and so that one pole is on the same vertical line ofv0. Notice
that this placement doesn’t asymptotically increase the area
of Γ. Finally, the edges necessary to augmentΓ in a drawing
of G′ can be inserted and the dummy edges inserted in the
first step can be removed obtaining a drawing ofG. Figure 2
shows an example of application of the algorithm described
in this section.

Theorem 2 Any n-vertex outerplanar graph of degree d has
a straight-line outerplanar drawing in O(dn log n) area.

Straightforwardly, we obtain the following:

Corollary 3 Any n-vertex outerplanar graph with constant
degree has a straight-line outerplanar drawing in O(n log n)
area.

4 Conclusions and Conjectures

In this paper we have shown thatO(dn log n) area is always
achievable for straight-line drawings of outerplanar graphs.

In [1] Biedl conjectured anΩ(n log n) lower bound on
the area requirement of straight-line and poly-line draw-
ings of outerplanar graphs. More precisely, she exhibited
a class of outerplanar graphs, the “snowflake graphs” shown
in Fig. 3.a, for which she claimed:

v w

u
uu

v
v w

w

u

v w

(a) (b) (c)

Figure 3: (a) A snowflake graph. (b) A snowflake graph sub-
divided in three complete outerplanar graphs. (c) Drawing
snowflake graphs in linear area. The shaded regions cor-
respond to the three copies of the drawing of the internal
subgraph of a complete outerplanar graph constructed by the
algorithm in [3].

Conjecture A [1] Any poly-line drawing of the snowflake
graph hasΩ(n log n) area.

It can be observed that ann-vertex snowflake graph is
composed of three identicalO(n)-vertex complete outer-
planar graphs (see Fig. 3.b), defined in [3] as the outerpla-
nar graphs whose dual graphs are complete binary trees.
For complete outerplanar graphs anO(

√
n) × O(

√
n) area

straight-line drawing algorithm has been presented in [3].
Such an algorithm constructs drawings in which the vertices
of the internal subgraph that are connected to the poles lie
on two half-linesl1 andl2 with a common endpoint and with
slopes−π/4 andπ/4. The entire drawing of the internal
subgraph lies in the wedge with angleπ/2 delimited byl1
and l2. Hence, considering three copies of the drawing of
the internal subgraph of a complete outerplanar graph con-
structed by the algorithm in [3], rotating them of0, π, and
3π/2, respectively, placing the drawings together, and insert-
ing the three vertices that are poles for the three complete
outerplanar graphs, anO(

√
n) × O(

√
n) area straight-line

drawing of a snowflake graph can be obtained (see Fig. 3.c).
We would like to point up that all known algorithms for

constructing straight-line drawings of general outerplanar
graphs try to minimize the extension of the drawing in only
one coordinate dimension, while allowing the other dimen-
sion to beO(n). However, we believe thatO(n log n) area
cannot be achieved by squeezing the drawing in only one di-
mension, and that hence a compaction in both dimensions
(or a proof that one dimension isΩ(n)) should be pursued.

Conjecture 1 There exist n-vertex outerplanar graphs that
in any straight-line drawing in which one dimension is O(n)
require ω(log n) in the other dimension.

We notice that there exist outerplanar graphs such that
both the width and the height of any grid drawing are
Ω(log n) (e.g., outerplanar graphs containing a complete bi-
nary tree as a subgraph).
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Appendix: Proof of Star-Shaped Visibility

We show that, given a rooted binary treeT , dual of a max-
imal outerplanar graphG, the algorithm described in Sec-
tion 3 constructs a star-shaped drawingΓ of T .

First, observe that the claim that all subtrees recursively
drawn are contained insideH holds, since the distance be-
tweenh1 andh2 is set equal to the height of the highest sub-
tree recursively drawn.

Further, all nodes directly drawn are in the upper and
lower part ofΓ. Namely, we have that: (i) by construction
such nodes are never placed aboveu4d+1 or belowl4d+1 and
(ii) if such nodes are placed inH , then it’s easy to deduce
by the construction that there exists a leftmost or a rightmost
path of a subtree ofT whose length is greater thand; how-
ever, this would imply that there exists a vertex ofG whose
degree is greater thand, since all the nodes of a leftmost or
rightmost path of a subtree ofT are neighbors of the same
node ofG (see also [3])

Γ satisfies property (i) of a star-shaped drawing by con-
struction. Concerning property (iv),L(T ) andR(T ) lie on
the bottommost linel4d+1 intersectingΓ. Hence, placing the
polesul andur of G one unit belowl4d+1 allows to draw
edges fromu andur to the nodes ofL(T ) andR(T ) without
creating crossings withΓ. Now we analyze properties (ii)
and (iii) of a star-shaped drawing. For every nodev lying in
the upper or in the lower part ofΓ, all nodes ofPl(v) and of
Pr(v) are placed either onh1, or onh2, or in the upper, or
in the lower part ofΓ. This allows to verify that properties
(ii) and (iii) of a star-shaped drawing are satisfied byΓ sep-
arately for each recursive step of the algorithm. Consider a
subtreeTj of T , as defined in Section 3. For each nodev of
Tj different fromvj

l−1
, vj

l , vj
f−1

, andvj
f , one betweenPl(v)

andPr(v) has nodes placed either all onh1 or all onh2, but
for v (see Fig. 4.a); the other one betweenPl(v) andPr(v)
has one node placed on the same horizontal or vertical line
of v and the other nodes either all onh1 or all on h2 (see
Fig. 4.b). Hence, straight-lines can be drawn fromv to the
nodes ofPl(v) and ofPr(v) without creating crossings inΓ.
Concerningvj

l−1
(vj

l ) one betweenPl(v
j
l−1

) andPr(v
j
l−1

)

(resp. one betweenPl(v
j
l ) andPr(v

j
l )) has nodes all onh1

or all onh2, but forvj
l−1

(resp. but forvj
l−1

and its child that

lies on the same horizontal line ofvj
l−1

) and the other one

betweenPl(v
j
l−1

) andPr(v
j
l−1

) (resp. betweenPl(v
j
l ) and

Pr(v
j
l )) is a convex polygonal line (see Figs. 4.c and 4.d).

Hence, straight-lines can be drawn fromvj
l−1

(from vj
l ) to

the nodes ofPl(v
j
l−1

) and ofPr(v
j
l−1

) (resp. ofPl(v
j
l ) and

of Pr(v
j
l )) without creating crossings inΓ. Finally, consider

nodesvj
f−1

andvj
f . One out ofvj

f−1
andvj

f , sayv, is placed
on u4d+1 or on l4d+1, while the other one, saŷv, is placed
on u2d+2 or on l2d+2. One betweenPl(v) andPr(v) has
nodes all onh1 or all onh2, but for v, while the other one
has nodes all onu2d+1 or onl2d+1. To prove thatv is visible
from the nodes ofPl(v) andPr(v), observe that the slope

of the edge connectingv to vj+1

k is less than the one of the
edge connectingv to v̂ (see Fig. 4.e). Namely, the horizontal
(vertical) distance betweenv andvj+1

k is at least4 (is exactly
2d), while the horizontal (vertical) distance betweenv andv̂
is exactly3 (is exactly2d− 1), and so the slope of(v, vj+1

k )
is less or equal than2d

4
, while the one of(v, v̂) is 2d−1

3
. We

have that2d
4

< 2d−1

3
if and only if d > 2 that is always satis-

fied considering maximal outerplanar graphs with more than
3 vertices. Hence, straight-lines can be drawn fromv to the
nodes ofPl(v) and ofPr(v) without creating crossings inΓ.
Concerninĝv, the nodes of one betweenPl(v̂) andPr(v̂) lie
all on h1, or all onh2, but for v̂ and eventually for its child
that lies on the same vertical line ofv̂. The nodes of the other
one betweenPl(v̂) andPr(v̂) lie all onu2d+1 or all onl2d+1,
but for v̂ and eventually forv, that we have already proved to
be visible fromv̂. Hence, straight-lines can be drawn fromv̂
to the nodes ofPl(v̂) and ofPr(v̂) without creating crossings
in Γ (see Fig. 4.f).
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Figure 4: Illustrations for the proof of star-shaped visibility
of the drawings constructed by the algorithm inSection 3.


