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1 Introduction

The watchman route problem (WRP) refers to planning
a closed curve, called a watchman route, in a polygon
(possibly with holes), with the shortest distance such
that every point on the polygon boundary is visible from
at least one point on the route. Here we consider the
anchored version where the start position is given [5].
Although seemingly very related to two well-known NP-
hard problems, namely the Art Gallery Problem with

Point Guards [13] (Point AGP) and the Euclidean Trav-

eling Salesman Problem [15] (Euclidean TSP), WRP is
solvable in polynomial time for simple polygons. It is
still NP-hard for polygons with holes [4].

WRP makes impractical assumptions that the watch-
man senses continuously along the route (taking infinite
number of viewpoints) and that the sensing actions do
not incur any cost. For instance, in an environment in-
spection task by a robot-sensor system, each sensing ac-
tion incurs a large overhead, corresponding to image ac-
quisition, processing, and integration [17]. In addition,
often for better sensing qualities, the robot has to stop
its movements during image acquisitions. We introduce
the problem of generalized watchman route with dis-
crete view cost, or GWRP in short , to relax the contin-
uous sensing assumption of WRP. It refers to planning
both a route and a number of discrete viewpoints on it,
such that every point on the polygon boundary is visi-
ble from at least one planned viewpoint; while the cost
is minimized. The cost is a weighted sum of both view
cost, proportional to the number of viewpoints planned,
and the traveling cost, the total length of the route.
GWRP is not a simple extension to the WRP. First,
for cases where traveling cost is negligible, GWRP is
reduced to Point AGP. So unlike WRP, which is in P

for simple polygons, the GWRP is NP-hard. Second,
as noticed in [10], the optimal WRP solution may in-
cur an unbounded cost for the corresponding GWRP
solution, i.e., infinite number of viewpoints are needed
on the route to cover the whole polygon boundary. In
[3, 9], the authors consider the problem of choosing a set
of discrete viewpoints on a given route, while maintain-
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ing the same visible polygon boundary. However, it is
not always successful and some routes may need infinite
number of viewpoints. Their algorithm stops once the
approximate viewpoints are too close to each other.

In this paper, we consider a nontrivial restricted ver-
sion of the GWRP, called the Whole Edge Covering

GWRP (WEC-GWRP), in which any polygon edge is
required to be entirely visible from at least one planned
viewpoint. The restriction arises naturally in robot in-
spection tasks, where the “map” given is often a dis-
cretized boundary representation and during inspection
tasks each small discretized boundary piece is consid-
ered as inspected via one planned viewpoint if and only
if all the points on it are visible. Thus, by regarding
each piece as a polygon edge, we have a whole edge
covering instance. The same restriction is also used in
the terrain guarding problem [6]. WEC-GWRP has the
same NP-hardness and inapproximability as GWRP.

Although a natural and nontrivial generalization to
both the AGP and the WRP, to the best of our knowl-
edge, there are few related works for the GWRP or
WEC-GWRP. In [7, 12], the authors considered a lo-
cal version of the robot exploration problem, “to look
around a corner”, i.e., to detect an object hidden be-
hind a corner while minimizing the sum of the robot
traveling distance and the sensor scan time. The prob-
lem is considerably simpler since the goal is local, i.e.,
the objective is not to cover all the object surfaces.

In [19], we considered the problem of view plan-
ning with combined view and travel cost (Traveling
VPP), which, given a number of discrete viewpoints
connected via a graph, asks for a subset of the view-
points connected by a route such that the boundary
edges of a given object are all covered, while minimiz-
ing a weighted sum of the number of planned viewpoints
and the length of the route. We gave an LP-based
rounding algorithm Round and Connect that chooses
the viewpoints greedily according to their LP optimal
solution values, and then solves the Steiner tree prob-
lem [18] to connect the chosen viewpoints. We showed
that the approximation ratio of Round and Connect is
in the order of view frequency, the maximum number
of viewpoints that cover a single boundary edge. We
also gave a reduction from Traveling VPP to the Group
Steiner Tree problem (GST) instance [8] in polynomial
time. By calling the poly-log approximation algorithm
for GST [8] after the reduction, we can approximate the
optimal solution of Traveling VPP within a poly-log ra-
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tio. The result is summarized in the following lemma:

Lemma 1 The optimal solution to Traveling VPP can

be approximated within the ratio of either the order of

view frequency or a poly-log function.

To use the approximation algorithm for the Travel-
ing VPP, we propose a novel sampling algorithm that
computes a bounded number (O(n12), where n is the
number of polygon vertices) of discrete viewpoints in
the polygon, to reduce the GWRP to Traveling VPP.
We emphasize here that the number of computed view-
points does not depend on any geometric parameter of
the polygon as opposed to [16] and [1]. We show that
if we restrict the problem to choose planned viewpoints
only from these sample viewpoints, the cost of the opti-
mal solution to the problem is at most a constant times
the cost of the true optimal WEC-GWRP solution. We
then construct a Traveling VPP instance using the sam-
ple viewpoints and call the approximation algorithm in
[19] for a solution. This implies that the cost of the
resulting solution is at most the cost of the optimal so-
lution to WEC-GWRP times the smaller of the order of
the view frequency and a polynomial of log n.

The sampling algorithm works in two steps: first it
reduces the viewpoint space from the polygon (2D) to a
bounded number of line segments (1D), and then from
these line segments (1D) to a bounded number of points.
In the first step, we decompose the polygon into visibil-

ity cells, computed via a partition such that the same
polygon edges are entirely visible from all points in each
cell. We then restrict the planned viewpoints to be on
the visibility cell edges. The reason is as follows. For
any feasible WEC-GWRP solution, any other planned
viewpoint X cannot belong to the same visibility cell
as S, and the route connecting X and S must cross
some edge of the visibility cell that X belongs to. After
replacing X with the crossing point, we have a feasi-
ble WEC-GWRP solution with the same cost and all
planned viewpoints are on the visibility cell edges.

Note that if traveling cost is ignored, it suffices to
sample one viewpoint arbitrarily on each visibility cell
edge. However, due to the view and travel tradeoff, we
do not know where on each cell edge the optimal WEC-
GWRP solution may choose as the viewpoint. This mo-
tivates us to utilize the metric structure in the problem
to guide our sampling from 1D to points. We define a lo-
cal region of each visibility cell edge, called domain, and
compute a bounded number of viewpoints inside the do-
mains such that the optimal WEC-GWRP solution can
be approximated (within a constant ratio) locally using
these sample points. For sampling inside each domain,
intuitively, we would like to impose an “ordering” on
the cell edges, which lets us exploit the weak “metric”
between them. This is achieved via dividing domains
into strips using the visibility cell vertices such that the

cell edge ordering remains the same within a strip. We
also show the optimal WEC-GWRP solution as a whole
can be approximated within a constant ratio once all the
local approximations are chained together.

The rest of the paper is organized as follows. First,
we give notations and formulate the WEC-GWRP. Sec-
ond, we detail the two steps of the sampling algorithm.
Last, we discuss potential applications of the proposed
sampling algorithm. We refer to the extended abstract
version of this paper for the approximation ratio analy-
sis of the proposed algorithm.

2 Problem definition

We now formally state the WEC-GWRP. Let P denote
the given polygon (with or without holes). Let ∂P de-
note its boundary, including the boundary of the holes.
Let A = {A1, A2, . . . , An} and E = {e1, e2, . . . , en} de-
note the set of polygon vertices and the set of polygon
edges, respectively. Let Ar denote the set of reflex ver-
tices of P (internal angle > 180 degrees). Point X1 is
visible from point X2, if the closed line segment X1X2

is contained in P (including ∂P). Edge e is visible from
point X , if every point of e is visible from X . Let S ∈ P
denote the start position of the watchman. Let V ′ de-
note a subset of viewpoints, i.e., V ′ = {X : X ∈ P} and
route(V ′) denote a route connecting the viewpoints in
V ′ and S. Let wv and wp denote the weights for the
view and traveling costs, respectively. Let |B| denote
the cardinality of a discrete set B, and let ‖φ‖ denote
the length of route φ. The WEC-GWRP is defined as:

min wv|V
′| + wp‖route(V ′)‖ (1)

Subject to ∀e ∈ E , ∃X ∈ V ′ : e is visible from X

3 Sampling Algorithm

3.1 Visibility cell decomposition

Our decomposition is a “finer” version than that given
in [20], i.e., each cell defined here is completely con-
tained in a single cell defined in [20]. This implies that
the properties of the cells defined in [20] are preserved
here. Similar terminologies (not by exactly the same
names) and results can also be found in [2, 11].

The visibility polygon of a point X ∈ P is the set of
points in P that is visible from X . Its edges are either
those contained in ∂P or the constructed edges incident
on reflex vertices. We call these constructed edges the
windows of point X . We further extend each window in
the direction from X to the incident reflex vertex un-
til it hits the polygon boundary for the last time, and
call it the extended window. An extended window is a
single line segment that may contain parts outside the
polygon P . For example, in Fig. 1, the visibility poly-
gon of vertex A1 consists of a window A5X1, and the
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corresponding extended window is A5X3. We call the
extended windows of the polygon vertices the critical

extended windows, the number of which is O(n2).

A1
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A5

X1

X2

X3

P

c ∈ C

Figure 1: Visibility cell decomposition of polygonal P .
The shaded region is a hole.

Critical extended windows partition the polygon into
visibility cells. This process is called visibility cell de-

composition. See Fig. 1. (The decomposition given in
[20] uses critical windows.) Let C denote the set of all
visibility cells and L denote the set of all visibility cell
edges. By the Zone Theorem [14], the number of visi-
bility cells, |C|, and the number of visibility cell edges,
|L|, are bounded by O(n4).

Our visibility cell decomposition preserves the follow-
ing property.

Lemma 2 All points in the same visibility cell have the

same polygon edges entirely visible from them.

3.2 Sampling visibility cell edge domain

For a visibility cell edge l, as shown in Fig. 2, we draw
a diamond shape consisting of two isosceles triangles
with l as the common base. The sides of each trian-
gle form an angle of α < 90 degrees with the base.
We will subsequently show how to determine α in Sec-
tion 4. We define the domain of the cell edge, denoted
by Dom(l), as the set of all points of polygon P inside
the diamond (including the diamond boundary edges).
In Fig. 2, Dom(l) is the set of points in the diamond
shape excluding the shaded area.

See Fig. 2. Inside each visibility cell edge domain
Dom(l), we draw orthogonal (w.r.t. l) lines from all the
vertices of visibility cells. The segments of these vertical
lines contained in Dom(l), the other visibility cell edges,
the polygon boundaries, and the boundaries of Dom(l)
intersect each other. We call these intersection points
sample points and denote the set of sample points for
all domains by Γ. The number of sample points in each
domain is the number of vertices in the arrangements of
the line segments described above, and is bounded by

α
αα

α l

Dom(l)

polygon boundary

X1

X2

X3

Figure 2: Illustration of the sampling algorithm. See
text for details.

(|L| + |L| + n + 4)2 = O(n8), according to Zone The-
orem [14]. (The terms in the brackets are the bounds
on the number of vertical line segments in each domain
(bounded by the number of visibility cell vertices), the
number of other visibility cell edges, the number of poly-
gon edges, the number of domain boundaries, respec-
tively.) Thus, Γ is bounded: |Γ| ≤ |L| ·O(n8) = O(n12).

We construct the complete graph G on Γ where the
edge cost between two sample points is the shortest path
distance between them in P . This is done by construct-
ing first the visibility graph of Γ; and then the shortest
path graph on the visibility graph. Now we have an
induced Traveling VPP instance, with the set of view-
points and traveling graph being Γ and G respectively.

4 Sampling Algorithm Analysis

For lack of space, we give the idea of the algorithm
analysis, to show that the cost of the optimal solution
to the induced Traveling VPP is at most a constant
times that of the optimal solution cost to WEC-GWRP.
Please see the electronic version of this paper for details.

Assume we have the optimal solution to the WEC-
GWRP. We construct a solution to the induced Trav-
eling VPP, by first partitioning the optimal route into
pieces, then replacing each piece with a route passing
through sample points while keeping endpoints of the
piece fixed, and then moving the endpoints to sample
points after the pieces are chained together. The par-
tition is done using strips defined for each domain, and
guarantees that the visibility cell edges that each piece
passes through are ordered. We then bound the length
of the replacing piece w.r.t. that of the original piece
on the optimal route. To bound the length, we further
categorize the ways the optimal route crosses the strips,
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for example one category corresponds to that the route
starts from the visibility cell edge that defines the do-
main and escapes from the domain boundary. Different
categories have different bounds as functions of the pa-
rameter α. By optimizing over the value of α (this cor-
responds to solving a min-max problem), we can have
the tightest bound. The main result is summarized in
the following theorem:

Theorem 3 The cost of the optimal solution to the in-

duced Traveling VPP is at most 11.657 times that of the

optimal solution to the WEC-GWRP.

5 Conclusion

We believe that the sampling algorithm proposed here
is a general technique and can also be used for other
shortest route problems where one would like to get an
approximation algorithm by first reducing the infinite
input space to a discrete sample point set, and then
solving the resulting discrete problem. For example,
the algorithm can be applied to a generalized version of
the 2.5D terrain guarding problem [6] with additional
travel cost in the objective function. We can then first
apply the cell decomposition to reduce the input space
to a set of line segments, the cell edges, (same decompo-
sition was used in [6]), then use the sampling algorithm
proposed in this paper to reduce it to a Traveling VPP
instance, and then call the Traveling VPP solver. The
resulting algorithm has an approximation ratio of the
order of the view frequency or a poly-log function of the
input size, whichever is smaller.
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