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Practical C1 reparametrization of piecewise rational Bézier curves
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Abstract

Piecewise rational Bézier curves with G1-continuity in
the projective space provide a useful tool for shape
blending applications with complex boundary condi-
tions where visual continuity is required. This pa-
per presents an efficient method to construct such
curves given an initial sequence of rational segments G1-
continuous in the affine space. Combination of degree
elevation and linear rational reparametrization is used
to transform the curve in the projective space.

1 Introduction

Shape blending and skinning are common geometri-
cal design operations, which are often performed by a
linear interpolation of a pair of piecewise polynomial
curves defining the source and target shapes [1], or
by interpolating control polygon vertices. The prob-
lem of retaining visual continuity in shape blending and
skinning methods which use piecewise rational curves
was addressed by different authors. In [2], the ap-
proach of adjusting the junction points was used to re-
tain G1-continuity. Another approach is to use a pro-
jective space transformation (such as a linear rational
reparametrization) to transform the segments required
to be G1-continuous in the projective space [4].

It is well-known that any linear rational
reparametrization (also known as Mœbius transform) of
a Bézier curve t → t̂, Ĉ(t̂) = C(t), t = bt̂/(1 + (b− 1)t̂)
is equivalent to multiplying the weights of the control
points [4] by some coefficients forming a geometrical
progression: ŵi = biwi, i = 0, . . . , n. Hence, by
changing the weights of the control points of individual
segments, the tangent vectors at the joint points can
be aligned and the final composite curve may be easily
parametrized as a C1-continuous curve with parameter
in [0, 1] for interpolation. A B-spline representation
can be obtained if needed by passing to the B-spline
basis and then removing the joint control points and
their knot values (see for example [3]). However a well-
defined composite reparametrization does not always
exist. By using degree elevation the needed degrees
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of freedom can be added to make reparametrization
possible in all situations.

We will denote the projective space by P and the asso-
ciated affine space by E. Then Gk(P) and Gk(E) denote
k-degree continuity with respect to the corresponding
space. We will use lower-case letters to denote projec-
tive coordinates and upper-case letters for affine coordi-
nates. A 2D affine space is assumed in this paper, and
hence the corresponding P = P2 appears as 3D, but the
results can be directly extended to higher dimensions.
Reparametrization is assumed to mean linear rational
reparametrization unless explicitly specified.

We will first present an analytic solution to the com-
posite normalization problem, and then address the
alignment and degree elevation problems.

2 Composite reparametrization

Let a piecewise rational Bézier curve be defined by a
sequence of m segments Ck(t), t ∈ [0, 1], k = 1, . . . ,m,

Ck(t) =
∑nk

i=0 Bnk,i(t)wk,iPk,i∑nk

i=0 Bnk,i(t)wk,i

where each segment k is of degree nk and Bnk,i

denotes the Bernstein basis function Bnk,i(t) =(
nk

i

)
(1− t)nk−iti . The corresponding polynomial curve

is defined in the projective space as

ck(t) =
nk∑
i=0

Bnk,i(t)pk,i, pk,i = (wk,iPk,i|wk,i) .

We will consider a G1 affine curve while the projec-
tive curve is at least G0, in such a way that pk,nk

=
pk+1,0, k = 1, . . . ,m− 1. The segments are assumed to
have no singularities.

2.1 Linked transforms

Suppose the composite curve is G1(P). Let bi, i =
1, . . . ,m stand for some positive coefficients defining the
reparametrization of its segments. We study the condi-
tions for bi to retain continuity in the projective space.
A trivial example of a valid bi sequence is the unit trans-
form: b1 = b2 = · · · = bm = 1.

Consider the first two segments of a composite curve
and the corresponding control vertices adjacent to the
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joint point p1,n1 = p2,0. Let p2,− = p1,n1−1, p2,◦ =
p2,0, p2,+ = p2,1. These points transform as 1

p̂2,− = bn1−1
1 p2,−

p̂2,◦ = bn1
1 p2,◦ (1)

p̂2,+ = bn1
1 b2p2,+ .

From G1(P)-continuity, p2,−,p2,◦ and p2,+ must be
collinear, in such a way that ∃ξ1 ∈ (0, 1) such that

p2,◦ = ξ1p2,− + (1− ξ1)p2,+ (2)

and similarly ∃η1 ∈ (0, 1) such that

p̂2,◦ = η1p̂2,− + (1− η1)p̂2,+ . (3)

After substitution of (1) into (3) and division by bn1
1 ,

one gets

p2,◦ =
η1

b1
p2,− + (1− η1)b2p2,+ . (4)

From (2) and (4), η1/b1 = ξ1, (1−η1)b2 = (1− ξ1), and
finally

b2 =
1− ξ1

1− ξ1b1
. (5)

In general, a recurrence relation is obtained:

bk+1 =
1− ξk

1− ξkbk
where ξk =

‖pk,◦pk,+‖
‖pk,−pk,+‖

, (6)

in such a way that all the other coefficients can be found
by fixing b1. The sequence {bk} obtained by using (6)
is called a linked transform. A linked transform is said
to be well-defined if all bk are positive. It is easy to
prove that, for all well-defined linked transforms, b1 ∈
(0, b1max) where b1max can be found by using the inverse
of (6) applied to a sequence starting from bm = 0 .

Developing recurrence (6), bk+1 can be written as a
finite continued fraction:

bk+1 =
1− ξk

1−
ξk(1− ξk−1)

1−
ξk−1(1− ξk−2)

. . .

1−
ξ2(1− ξ1)
1− ξ1b1

. (7)

2.2 Normalization

A rational Bézier curve of degree n is said to be in stan-
dard form if w0 = wn = 1. Similarly, a composite curve
is called normalized if it is G1(P) and w1,0 = wm,nm = 1.

Theorem 1 For a given G1(P)-continuous composite
curve, there exists a unique linked transform {bk} which
transforms it to a normalized form.

1The factor bn1
1 in p̂2,+ is needed to retain G0-continuity.

Proof. The first weight w1,0 can be simply normalized
by applying a uniform scaling 1/w1,0 to all vertices, in
such a way that it can be assumed that w1,0 = 1. A
linked transform {bk} normalizes the last weight if

wm,nm

m∏
k=1

bnk

k = 1 . (8)

It is easy to show that, by varying b1 in the admissible
interval (0, b1max), the product

∏m
k=1 bnk

k can take any
positive value, and hence a solution of (8) always exists.
This solution is also unique because each relation (6)
defines a monotonous function bk+1(bk). �

Consider now the case of all the segments having the
same degree n. Then (8) can be simplified as

m∏
k=1

bk = w−1/n
m,n (9)

and an analytic solution can be found by using a tech-
nique based on the continued fraction theory. Let
bk = Pk/Qk. From (7),

bk+1 =
(1− ξk)Qk

Qk − ξkPk
=

Pk+1

Qk+1
. (10)

Suppose b1 is known. We can define the following re-
currence relations:

Pk+1 = (1− ξk)Qk (11)
Qk+1 = Qk − ξkPk

P1 = b1 , Q1 = 1 .

After substituting (11) into (10), equation (9) becomes

b1

Q1
· (1− ξ1)Q1

Q2
· · · · · (1− ξm−1)Qm−1

Qm
= w−1/n

m,n

in such a way that, after cancelling the common terms,
the following equation is obtained for b1:

b1 =
Qm w

−1/n
m,n∏m−1

k=1 (1− ξk)
, (12)

where Qm is by construction a linear function of b1

which in turn can be expressed by using recurrences:

Qk = Akb1 + Bk (13)
Ak+1 = Ak − ξk(1− ξk−1)Ak−1

Bk+1 = Bk − ξk(1− ξk−1)Bk−1

A1 = 0, A2 = −ξ1, B1 = B2 = 1 .

After substituting (13) into (12) we finally obtain

b1 =
Bm

w
1/n
m,n

∏m−1
k=1 (1− ξk)−Am

, (14)

where Am and Bm only depend on ξk. The resulting
sequence bk found from the recurrence relation will nor-
malize the composite curve.
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Theorem 2 The sequence obtained by solving (12) is
well-defined for any set of ξk ∈ (0, 1).

The proof is very technical and given in the full ver-
sion of the paper.

Analytic normalization requires all the segments to
have the same degree, otherwise some terms in (8) will
have different powers and cannot be simplified, in such
a way that the resulting equation will be a polynomial
equation on b1. Theorem 1 guarantees that it has ex-
actly one solution in the interval (0, bmax

1 ), which can
be found using numerical methods. In practical appli-
cations, composite curves are often constructed from
segments of the same degree, or which have their degree
between 1 and some fixed N , in which case all the seg-
ment degrees can be elevated to degree N and (14) can
still be used.

2.3 Alignment problem

Consider a composite G1(E) curve which is not G1(P).
Such a curve is called non-aligned, as opposed to aligned
G1(P) curves.

In this section, we will show that, by using appropri-
ate linear rational reparametrization of the segments, it
is possible to obtain G1(P)-continuity under some con-
ditions. For this it is sufficient to “align” the vectors de-
fined by the joint point and the adjacent control vertices
(figure 1), since the tangents to the Bézier segments are
proportional to these vectors. Since reparametrization
results in moving the control vertices along the dashed
lines, it is possible to make them collinear. Geometri-
cally, the reparametrization can be defined by fixing for
example p̂− and finding p̂+ as the intersection of p̂−p̂0

and 0p̂+. All the points are coplanar since the curve is
G1(E). Of course, not all positions of p̂− are possible,
since for some of them the intersection does not exist,
or is in the half-space of negative w.

0

"""
PPPPP
qqq q

q qp◦
p− p+

0

p̂◦p̂−
p̂+

Figure 1: Alignment of control vertices

Alignment is always possible for two-segment curves,
since there is only one joint point, in such a way that
line p̂−p̂+ can be made horizontal. Since reparametriza-
tion affects all the control vertices of a segment, align-
ment of any two segments of a composite curve fixes
the reparametrization coefficients for all the other seg-
ments. It follows that in some cases it is impossible to
apply this method to a multi-segment curve [4].

To study the conditions under which alignment is an-
alytically possible, we introduce the central inclination
function θ(t) of a rational parametric curve c(t) with
affine projection C(t) as

θ(t) =
w′(t)

‖C′(t)‖w(t)
=

w′(t)
‖c′(t)− (C(t)|1)w′(t)‖

, (15)

where the norms are euclidean in the corresponding
spaces. In addition, φ(t) = arctan(θ(t)) is defined as
the central inclination angle of c(t).

To explain the geometrical meaning let us fix some
t = t∗ and translate the curve using affine translation of
vector V = −C(t∗). The translated affine curve defined
as ĉ(t) = c+ (Vw(t), w(t)) will then pass by the origin,
Ĉ(t∗) = 0. Since translation does not change the affine
derivative nor the weight,

θ̂(t∗) = θ(t∗) =
w′(t)

‖Ĉ′(t)‖w(t)
=

w′(t∗)
‖ĉ′(t∗)‖

=
w′(t∗)
‖ĉ′(t∗)‖

,

and θ(t∗) is the tangent of the angle between the tangent
vector ĉ′(t∗) and the horizontal hyperplane w = w(t∗).

It is easy to check that central inclination is invariant
not only to affine translations, but also to affine rota-
tions and uniform scaling in P. It is also invariant to
linear reparametrization, meaning that if t̂ = λt then
θ̂(t̂) = θ(t). For composite rational curves, this also
means that G1(P)-continuity requires C0-continuity of
θ(t).

Using the well-known formula for the tangent vectors
to Bézier curves,

c′(0) = n(p1 − p0) , c′(1) = n(pn − pn−1) , (16)

it is easy to express the endpoint central inclinations.
Substituting (16) into (15) and using ‖(P|1)− (Q|1)‖ =
‖P−Q‖, one gets

θ(0) = θ(0) =
w1 − w0

w1‖P1 −P0‖

θ(1) = θ(1) =
wn − wn−1

wn−1‖Pn−1 −Pn‖
.

Let L(0) = 1/‖P1 −P0‖, L(1) = 1/‖Pn−1 −Pn‖. Then

θ(0) = L(0) w1 − w0

w1
, θ(1) = L(1) wn − wn−1

wn−1
.

The inclinations after a reparametrization with coeffi-
cient b now write as follows:

θ(0)(b) =
w0L

(0)

w1

(
w1

w0
− 1

b

)
θ(1)(b) =

wnL(1)

wn−1

(
b− wn−1

wn

)
.

The graph of (θ(0)(b), θ(1)(b)) for b > 0 is easily found to
be a branch of hyperbola with asymptotes L(0), −L(1).
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This leads to the following algorithm to test if align-
ment of the composite curve is possible: Start with
θ1 = −L

(1)
1 . At step k, k = 2, . . . ,m− 1, find θk as

θk = L
(1)
k

(
L

(0)
k wk,0wk,nk

(L(0)
k − θk−1)wk,1wk,nk−1

− 1

)
.

If θk < L0
k+1 then proceed, otherwise the curve cannot

be aligned.

3 Combining degree elevation with reparametriza-
tion

It can be shown that it is impossible to align three
quadratic segments representing 90◦ circular arcs whose
radii are 1/2, 1 and 1/2 by using reparametrization,
while this becomes possible by elevating them to cu-
bics. The solution is to combine degree elevation with
reparametrization using different parameters for each
degree.

Consider the reparametrization of an n-degree curve
with parameter c, followed by a canonical degree ele-
vation and then by another reparametrization with pa-
rameter b. The new vertices qi, i = 0, . . . , n + 1, are

q0 = p0 , qn+1 = bn+1cnpn

qi = bi ic
i−1pi−1 + (n + 1− i)cipi

n + 1
, i = 1, . . . , n .

Without loss of generality the analysis can be per-
formed with the original curve in standard form. Let
l0 = L(0)/nw1, l1 = L(1)/nwn−1. The resulting end-
point central inclinations are:

θ(0)(c, b) = L(0) + l(0)
(

1
c
− n + 1

bc

)
(17)

θ(1)(c, b) = −L(1) − l(1) (c− (n + 1)bc) . (18)

The graph of (17), (18) is a 2D area defined by a branch
of hyperbola and two lines.

One particular useful case of alignment is zero-
inclination alignment, with θ(0)(c, b) = θ(1)(c, b) = 0.
System (17),(18) has two solutions:

c1,2(x, y) =
1− (n + 1)2 + n2w1wn−1 ∓

√
D

−2nw1
(19)

b1,2(x, y) =
1 + (n + 1)2 − n2w1wn−1 ∓

√
D

2(n + 1)
, (20)

where D = (1 + (n + 1)2 − n2w1wn−1)2 − 4(n + 1)2 .
From the analysis of (19), (20), it follows that the solu-
tions are only positive for w1wn−1 ≤ 1 . The choice of
a particular solution can be made depending on some
optimization criterion for the composite curve (for ex-
ample as to minimize the w variation). In the case of

conic segments, w1 = wn−1 ≤ 1 is satisfied for elliptical
arcs and parabolic segments. Therefore we can easily
align a composite curve composed of such segments to-
gether with polynomial cubics and the final piecewise
cubic curve can be normalized using the previous sec-
tion results. This is an important practical case for
CAD applications.

4 Examples

Figure 2 presents a test of the alignment method pro-
posed. The left sequence of curves is a linear blending
of the left curve composed of four circular arcs and the
right curve composed of two circular arcs, where the
segments are taken in standard form and hence are not
aligned. The global parametrization of the curves is
C1 in the affine space. Here the kinks due to the dis-
continuous weight function are visible. On the other
hand, the right sequence results from the blending of
C1(P)-continuous normalized curves after performing
reparametrization combined with degree elevation.

(a) (b)

Figure 2: Interpolation in the projective space (a) non-
aligned segments; (b) after segment alignment;

5 Conclusion

We have presented a practical method to construct G1-
continuous composite rational curves which can be used
in blending or skinning applications with visual conti-
nuity requirement.
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