
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

On a geometric approach to the segment sum problem and its generalization

Asish Mukhopadhyay ∗† Eugene Greene ∗‡

Abstract

Given a sequence of n real numbers a1, a2, a3, . . . , an,
the maximum segment sum problem is that of determin-
ing indices i and j (1 ≤ i ≤ j ≤ n) such that the sum
s(i, j) = ai + ai+1 + . . . + aj is a maximum. Monotone
matrices were shown to be remarkably effective in solv-
ing several geometric optimization problems. The sur-
prise is that it can also be applied to the above problem
as we show here. Recently, there was a breakthrough in
obtaining an O(n log n) algorithm for the kth smallest
segment sum problem by exploiting a connection of this
problem to the well-known slope selection problem. In
this paper we show that this problem can also be solved
within the same time bounds in the simpler framework
of expander graphs.

1 Introduction

Given a sequence of n real numbers a1, a2, a3, . . . , an,
the maximum segment sum problem is that of deter-
mining indices i and j (1 ≤ i ≤ j ≤ n) such that the
sum s(i, j) = ai + ai+1 + . . . + aj is a maximum. This
problem was introduced by Jon Bentley in his CACM
column (#8) on Programming Pearls. He described
an elegant linear time algorithm due to J. B. Kadane [5].

Monotone matrices have been used to solve a variety
of geometric optimization problems [1]. In this paper,
we show how it can applied to solve the largest segment
sum problem in linear time. In fact, this scheme
allows us to find the largest segment sum for all start
positions in the array, as well as the largest segment
sum for a segment length that lies between specified
length-parameters l and u, within the same time
bounds.

Lately, there has been a flurry of attempts to solve a
more general version of this problem, namely, finding
the kth smallest segment sum, [6], [3], [4], culminating
in an O(n log n) algorithm by Lin and Lee[13], who
also gave an O(n log n + k) algorithm for enumerating
the k smallest segment sums. This breakthrough was

∗School of Computer Science, University of Windsor, Windsor,
Canada

†asishm@cs.uwindsor.ca, Partially supported by an NSERC
operating grant

‡greene6@uwindsor.ca, Supported by an NSERC USRA

obtained by reducing this problem to a geometric
problem. Interestingly enough, the problem of finding a
segment of maximum density whose length lies between
input length parameters l and u was solved by Kim
[12] also by reduction to a geometric problem.

While the algorithm of Lin and Lee [13] is of theo-
retical interest, it opens up the prospect that a simpler
algorithm may be possible, and this is the principal
motivation behind this paper. We show that an
expander-graph based framework can also be used for
finding the kth smallest segment sum. In our opinion,
this makes things simpler, though not breathtakingly
so as is our goal.

This paper is structured as follows. In the next
section we briefly describe Kadane’s scheme, and the
monotone-matrix based approach in the next. In Sec-
tion 4, we briefly outline Lin and Lee’s algorithm, and
in the following the expander graph based modification
of this algorithm. In the sixth and last section we con-
clude.

2 Kadane’s scheme

Kadane’s scheme is based on the clever observation
that a maximum segment sum cannot have a prefix
with a negative sum, or, for that matter a suffix with a
negative sum.

It finds the start, end, and maxSum of a maximum
segment sum, using three variables - two index variables
i and j, with i ≤ j always and a currentSum which
is the segment sum from i to j. As j sweeps over
the array, the values of start, end and maxSum are
updated whenever currentSum exceeds maxSum.
Whenever currentSum becomes negative, the variable
i jumps to j + 1, since all segment sums with a start
value in [i..j] would have a negative prefix.

The time complexity of this scheme is clearly in O(n).

3 Monotone matrix approach

An n × n matrix of reals is monotone if the maximum
entry in row i occurs in the same column or in a column
to the right of the column in which the maximum entry

19th Canadian Conference on Computational Geometry, 2007

in row i− 1 occurs. See Example 1.

A matrix is said to be totally monotone if for any

2 × 2 submatrix
[

a b
c d

]
, it is not simultaneously

possible that a < b and c > d.

Let M be an n× n matrix such that M [i][j] = s(i, j)
when i ≤ j, and M [i][j] = −∞ when i > j.

Fact 1 M is a totally monotone matrix.

Proof. Let indices i, j, k, and l be such that 1 ≤
i < k ≤ j < l ≤ n. Assume M [i][j] < M [i][l]. If
M [i][j] = −∞ then M [k][j] = −∞ as well, and so
M [k][j] ≤ M [k][l]. Otherwise, ai + . . . + ak + . . . + aj <
ai + . . . + ak + . . . + aj + . . . + al. So ak + . . . + aj <
ak + . . .+aj + . . .+al, and hence M [k][j] ≤ M [k][l]. ¤

By precomputing all prefix sums P [i] =
a1 + a2 + . . . + ai (we define P [0] = 0), we can compute
an M [i][j] in constant time as M [i][j] = P [j]− P [i− 1]
for i ≤ j.

Now we can use the monotone matrix searching re-
sults of [1] to determine the largest segment sum in each
row in O(n) time. Thus we have a largest segment sum
beginning at a given index i (1 ≤ i ≤ n), while the
largest of these is a maximum segment sum.

Example 1 Consider the sequence 5, -10, 6, -10, 7,
-10, 8. The monotone matrix, M , corresponding to this
sequence is:

1 2 3 4 5 6 7
1 5 -5 1 -9 -2 -12 -4
2 -∞ -10 -4 -14 -7 -17 -9
3 -∞ -∞ 6 -4 3 -7 1
4 -∞ -∞ -∞ -10 -3 -13 -5
5 -∞ -∞ -∞ -∞ 7 -3 5
6 -∞ -∞ -∞ -∞ -∞ -10 2
7 -∞ -∞ -∞ -∞ -∞ -∞ 8

This approach allows us to solve a slightly more gen-
eral version of the segment sum problem. We can find
the maximum segment sum when the length of such
a segment is restricted to lie between l and u, where
1 ≤ l ≤ u ≤ n, by only considering entries along the
diagonals defined by j − i = l, l + 1, . . . , u and setting
all other entries to −∞.

4 Lin-Lee’s algorithm for kth smallest segment sum

The Lin-Lee algorithm, for k ≥ n, uses a battery of
very powerful tools - Megiddo’s parametric search [16],
Cole’s technique of slowing down a sorting network [7],
as well as an approximate counting technique by Cole

again [8] adapted to this problem.

The original contribution of the Lin-Lee paper is
the reduction of this purely combinatorial optimization
problem to a slight variation of the well-known and
well-researched slope selection problem. The latter
problem is to select a line whose slope is the kth small-
est from the O(n2) different lines implicitly defined
by a set of n points in the plane. By dualization this
is reduced to the problem of finding the kth smallest
x-coordinate of the vertices in an arrangement of n
lines in the plane. A number of O(n log n) algorithms
are known for this problem, with the paper by Cole et
al [8] being the first to achieve this bound.

The first step in the reduction is to note that the
segment sums s(i, j) are implicitly defined by a set of
n + 1 prefix sums, P [j] = Σj

i=1ai and P [0] = 0. This is
analogous to lines implicitly defined by pairs of a set of
n given points in the plane. We shall see in the next
few paragraphs how this analogy is exploited.

Now define two sets of lines: a set of horizontal lines
H = {li : y = −P [i]|0 ≤ i ≤ n} and a set of 450-inclined
lines: I = {li+n+1 : y = x − P [i]|0 ≤ i ≤ n}. Of the
O(n2) intersections defined, the x-coordinates of the
intersections of the lines y = x − P [j] in I with the
lines y = −P [i] in H, where i < j, define all possible
segment sums. These are called feasible intersection
points in [13] and the problem is to select the kth
smallest of these. This is not an exact reduction to
the slope-selection problem, but this is only a minor
obstacle as shown in [13].

Let Vk : x = xk be a vertical line through the kth
feasible intersection point (xk, yk). We simulate a
sorting algorithm (actually a parallel sorting algorithm
like the AKS sorting network [2]) at xk to determine
the sorted order π of the lines of H and I with respect
to the y-values of their intersections with Vk. When
comparing an ordering π1 at x = c1 to an ordering π2

at x = c2, the inversion of the intersection order of a
pair of lines li and lj implies that these lines intersect
between x = c1 and x = c2. An inversion is said to
be feasible if the corresponding intersection point is
feasible. In order to resolve a comparison between two
lines li and lj , we need an oracle that returns a count
of the number of feasible intersections to the left of the
line x = xij , where (xij , yij) is the intersection of the
lines li and lj . By comparing this count with k, we can
decide which side of Vk contains (xij , yij). Knowing
this determines the relative ordering of li and lj at Vk.

Lee and Lin provide such a counting oracle whose
complexity is in O(n log n). This oracle, used in

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

conjunction with a parallel sorting scheme and Cole’s
technique of slowing down a sorting network, solves the
problem in O(n log2 n) time. An approximate counting
oracle is then used to whittle away a further log n factor.

The essence of this approximate counting or-
acle is to maintain the following invariant:
FIexact ≤ FIapprox ≤ αn, where FIexact and FIapprox

are respectively a count of the exact number of feasible
intersections and an approximate number of these in
an interval [xl, xr] that contains xk, while α is a factor
that decreases as the parallel sort progresses.

This is accomplished by maintaining an approximate
count of the inversions at the boundaries of the interval
[xl, xr]. It is a modification of Cole’s idea [8]. At x =
xl the lines in H are partitioned into a set of fixed-
size blocks Bl = {bl

1, b
l
2, . . . , b

l
n

ml

} such that for all 1 ≤
i < j ≤ n

ml
, no line in bl

i will intersect x = xl at a
point higher than any line in bl

j . A similar partition
Br is maintained for the end-point xr. At xl the actual
position of the intersection of a line in I is accurate
to within a block. That is if the actual intersection is
inside a block bl

i then in the approximate order it is
assumed to lie between bl

i−1 and bl
i (see Fig. 1). At xr

this intersection will be placed between br
i and br

i+1 if it
actually lies in the block br

i .

line in I

ith block

(i− 1)th block

x = xl

moved down

Figure 1: In the approximate ordering at x = xl, a line
in I is inserted between bl

i−1 and bl
i

This means that the approximate inversion count at
xl is an underestimate by at most mln, and the count
at xr is an overestimate by at most mrn. Whenever
the oracle receives a query in the form of some vertical
line x = q, it needs to determine the side of Vk that
contains the query line. If q < xl or q > xr, then the
query line lies to the left or right, respectively, of Vk.
Otherwise, we split [xl, xr] at q, and keep the interval

that contains xk. As the algorithm progresses, the
number of lines in each block is halved when necessary
to maintain certain invariants regarding the accuracy
of the approximate orderings.

When α reduces to a small constant value, the set
of feasible intersections X inside the current interval
[xl, xr] is determined by an enumeration oracle, while
the number of feasible intersection points k′ to the left
of the line x = xl is found by invoking an exact counting
oracle, both due to Lin and Lee. Now a linear-time
selection is used to find xk, which is the point of X
with the (k − k′)th smallest x-coordinate. However, if
the sorting algorithm finishes before α is small enough,
then xk is found using the sorted order of the lines at
Vk. (The lines responsible for xk will just have been
inverted in the ordering π, and so xk is the largest x-
coordinate of the points of intersection of lines adjacent
and inverted in π.)

5 Expander Graphs

Expander graphs are an extremely versatile tool. They
have been applied to find a simplified proof of the
celebrated PCP theorem [9], to find optimal codes [17],
and to problems in computational Geometry [11].

Intuitively explained, an expander graph is a sparse
graph that is well-connected. Formally speaking, an ex-
pander graph is a d-regular graph on a set V of n vertices
such that for any subset S ⊂ V of at most n/2 vertices,
there are at least c|S| vertices of V − S connected to
S. Such a d-regular graph is called an (n, d, c) expander
graph. Explicit constructions of expander graphs have
been given by Lubotzky, Phillips, and Sarnak (LPS, for
short) [14] and, independently, by Margulis [15] under
suitable restrictions on n and d. Katz and Sharir [10]
make use of these graphs, with sets of lines as vertex
sets, to avoid Cole’s use of a sorting algorithm.

6 Alternate algorithm for the kth smallest segment
sum

Let L be an arrangement of n lines in the plane. Sup-
pose by some magic we could bunch all the intersection
points into an ordered set of groups each of size αn2

and locate the kth feasible intersection point in one
of these groups. If in the process of location we can
also determine the rank of the kth feasible intersection
point within this group, we can repeat this process
on this group of points of reduced size. Hopefully, by
doing this O(log n) times we should be able to identify
the kth feasible intersection point.

Katz and Sharir [10] showed how to use expander

19th Canadian Conference on Computational Geometry, 2007

graphs to do this when we are looking for the kth of
all the intersection points. The salient feature of their
algorithm is to maintain over O(log n) stages a trape-
zoidized vertical slab sj = [xl, xr] (at stage j) that con-
tains the kth intersection point. Each trapezoid ti in
the slab sj intersects a subset Lj

i of lines from L. The
trapezoidation is such that

• each trapezoid is intersected by at most (3/r)jn
lines, where r is a fixed large constant such that
9r2 ≤ d

• the total count of |Lj
i | over all trapezoids is at most

3n

Expander graphs are constructed over each Lj
i . The

edges of these graphs (corresponding to intersection
points of the arrangement of L) are used to construct
O(r2) slabs and O(r) trapezoids per slab, for each ti.
The intersections of L with these new trapezoids are
used to divide sj into a constant number of new vertical
slabs. Using a binary search on these new slabs, facili-
tated by Lin and Lee’s approximate counting oracle, we
can locate the slab sj+1, that contains Vk, in a constant
number of oracle queries. The trapezoidation of sj+1

is obtained from the O(r3) trapezoids we constructed
from the expander graphs.

This process continues until each trapezoid in our
slab intersects a constant number of lines. Finally,
we need to enumerate the feasible intersection points
inside our final slab if the kth feasible intersection point
has not already been discovered. The trapezoidation
of the slab provides us with such an enumeration. We
determine the number of feasible intersection points
inside each one of the trapezoids, by intersecting
pairwise the lines that intersect the trapezoid. Since we
need to know the rank of the kth feasible intersection
point in this list, we invoke Lin and Lee’s counting
oracle to determine the number of feasible intersection
points to the left of the left slab-boundary.

Each query to the approximate counting oracle takes
O(n) time to answer, and there are O(log n) queries.
The total cost of maintaining the approximate counting
oracle is in O(n log n). The total cost of the expander
graph construction over all the stages is dominated by
O(n log n). Hence the worst-case time complexity of this
algorithm is in O(n log n).

7 Conclusion

The foremost open problem is to come up with a re-
ally simple deterministic O(n log n) algorithm for this
problem. The other open problems are to explore the
possibility of extending these techniques to higher di-
mensions. According to [10] the kth intersection point

of an arrangement of hyperplanes in d dimensions can
be found in time that is close to O(nd−1). This gives
cause for hope.

References

[1] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor,
and R. E. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:195–208, 1987.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log
n parallel steps. Combinatorica, 3(1):1–19, 1983.

[3] S. E. Bae and T. Takaoka. Improved algorithms for the
k-maximum subarray problem. Comput. J., 49(3):358–
374, 2006.

[4] F. Bengtsson and J. Chen. Efficient algorithms for k
maximum sums. Algorithmica, 46(1):27–41, 2006.

[5] J. Bentley. Programming pearls: algorithm design tech-
niques. Commun. ACM, 27(9):865–873, 1984.

[6] C.-H. Cheng, K.-Y. Chen, W.-C. Tien, and K.-M. Chao.
Improved algorithms for the k maximum-sums prob-
lems. Theor. Comput. Sci., 362(1):162–170, 2006.

[7] R. Cole. Slowing down sorting networks to obtain faster
sorting algorithms. J. ACM, 34(1):200–208, 1987.

[8] R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemeredi.
An optimal-time algorithm for slope selection. SIAM
J. Comput., 18(4):792–810, 1989.

[9] I. Dinur. The PCP theorem by gap amplification.
Electronic Colloquium on Computational Complexity
(ECCC), 12(046), 2005.

[10] M. J. Katz and M. Sharir. Optimal slope selection via
expanders. Inf. Process. Lett., 47(3):115–122, 1993.

[11] M. J. Katz and M. Sharir. An expander-based ap-
proach to geometric optimization. SIAM J. Comput,
26(5):1384–1408, 1997.

[12] S. K. Kim. Linear-time algorithm for finding a
maximum-density segment of a sequence. Information
Processing Letters, 86(6):339–342, June 2003.

[13] T.-C. Lin and D. T. Lee. Efficient algorithms for the
sum selection problem and k maximum sums problem.
In S. K. Madria, K. T. Claypool, R. Kannan, P. Up-
puluri, and M. M. Gore, editors, ISAAC, volume 4317
of Lecture Notes in Computer Science, pages 460–473.
Springer, 2006.

[14] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan
graphs. Combinatorica, 8(3):261–277, 1988.

[15] G.A. Margulis. Explicit group-theoretical constructions
of combinatorial schemes and their application to the
design of expanders and concentrators. PINFTRANS:
Problems of Information Transmission (translated from
Problemy Peredachi Informatsii (Russian)), 24:39–46,
1988.

[16] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. J. ACM, 30(4):852–
865, 1983.

[17] M. Sipser and D. A. Spielman. Expander codes. IEEE
Transactions on Information Theory, 42(6):1710–1722,
1996.

