
Finding Intersections of Bichromatic Segments Defined by Points

Amr Elmasry∗ Kazuhisa Makino†

Abstract

Consider a set of n points in <2, each colored either red
or blue. A line segment defined by two red points is a
red segment, and that defined by two blue points is a
blue segment. A bichromatic intersection is an intersec-
tion between a red segment and a blue segment. We
give an O(n2 + k) algorithm that reports k bichromatic
intersections defined by the n points. Extending our al-
gorithm to points on spherical curves, we can report in
O(n2 + k) time the k simplices, defined by n points in
<3, containing a specified point in their interior.

1 Introduction

Geometric intersection problems are among the funda-
mental problems of computational geometry. One of
these intersection problems is the problem of report-
ing all pairwise line-segment intersections. Using a
plane-sweep algorithm, Bentley and Ottmann showed
how to report k intersecting pairs of n line segments in
O((n + k) log n) time and O(n) space [4]. Later, Bala-
ban gave an optimal algorithm for the problem running
in O(n log n + k) time and O(n) space [2].

A variation of the general line-segment intersection
problem is the bichromatic line-segment intersection re-
porting; Given a set of red segments and another of
blue segments, the bichromatic intersections problem
is the problem of reporting the intersections between
red segments and blue segments. The case where there
are no possible monochromatic intersections (intersec-
tions between segments having the same color) is a
special case of the general line-segments intersections
problem, and hence inherits the same O(n log n + k)
bound. Mairson and Stolfi [9] gave a simpler algorithm
for such special case than that of Balaban. The prob-
lem becomes more difficult when monochromatic inter-
sections exist. In such case, Agarwal [1] and Chazelle
[6] showed how to report k bichromatic intersections in

O(n4/3 logO(1) n + k) time. A special case of the latter
problem is when the union of each of the red and the
blue segments is connected as a point set. In such case,

∗Department of Computer Engineering and Informatics,
Beirut Arab University, Lebanon (On sabbatical from Alexandria
University of Egypt); elmasry@alexeng.edu.eg

†Department of Mathematical Informatics, Graduate School of
Information and Technology, University of Tokyo, Tokyo, Japan;
makino@mist.i.u-tokyo.ac.jp

Basch et al. gave an O((n+k) logO(1) n) time algorithm
for reporting k such bichromatic intersections [3].

Consider a set of n points, each colored either red or
blue. Our problem is to find intersections between line
segments joining two red points and those joining two
blue points. Note that the number of such blue and red
line segments is Θ(n2), and the number of the bichro-
matic intersections k is O(n4). If we consider all the
possible Θ(n2) red and blue line segments connecting
the n-point set, our intersection problem is even a spe-
cial case of that of Basch et al. [3]. Applying their algo-

rithm on these segments, we get an O((n2+k) logO(1) n)
algorithm for such problem. In this paper, we introduce
a simpler algorithm and get rid of the poly-logarithmic
factor achieving the O(n2 + k) bound.

Consider a set of n points and a point p in <d.
A d-dimensional simplex that contains p is a minimal
subset of points whose convex hull contains p. By
Carathéodory theorem (see [10]), the cardinality of any
such set is at most d + 1 (under the general position
assumption, this would be exactly d + 1). It is a long-
standing open problem to find an algorithm, for report-
ing all such k simplices, whose running time is polyno-
mial in n, d, and k (see [5, 11]). For the case d = 2, an
algorithm for reporting all such simplices in O(n + k)
time is introduced in [8]. In this paper, we give an
O(n2 + k) algorithm for the case d = 3.

2 The bichromatic-intersections algorithm

A main result of the geometric duality is that the angu-
lar order of a given set of n points can be produced
with respect to each of these n points, all in O(n2)
time and storage [7]. We use this result, and assume
that throughout the algorithm such angular orders are
known and stored by a preprocessing phase.

We use a divide-and-conquer approach to solve our
problem. The set of n points is divided into two sets
of almost equal sizes (dn/2e and bn/2c) via a horizon-
tal line. This can be done by finding the median of the
points with respect to their Y -coordinates. Two cate-
gories of line segments are defined: A crossing segment
is a segment whose endpoints are each on a different side
of the dividing horizontal line. A non-crossing segment
is a segment whose two endpoints are on the same side
of the dividing horizontal line. Three types of intersec-
tions are thereby possible depending on the type of the



two intersecting segments:

1. crossing/non-crossing

2. crossing/crossing

3. non-crossing/non-crossing

We start by finding the first two types of intersec-
tions (crossing/non-crossing and crossing/crossing), and
then we recursively solve the problem for each of the
two subsets of points to find the third type of in-
tersections (non-crossing/non-crossing). Being able to
find the first two types of intersections for a single
recursive step in O(n2) plus the time required to re-
port such intersections, the claimed O(n2 + k) bound
follows as a result of the following recursive relation:
T (n) = T (dn/2e) + T (bn/2c) + O(n2) whose solution is
T (n) = O(n2).

For an efficient implementation, instead of finding the
median of the Y -coordinates of the points with every re-
cursive call, we sort the n points with respect to their
Y-coordinates in a preprocessing phase. An iterative
bottom-up (considering the recursion tree) implementa-
tion instead of the recursive implementation is possible.

Finding crossing/non-crossing intersections

Fixing a point x, consider the line segments that cross
the separating horizontal line and join x to the points
on the other side with the same color as x. We call
these segments the segments of the cone of x. The an-
gular order of these segments around x is computed in
a preprocessing phase. We are looking forward to find
the intersections of the segments of the cone of x with
the non-crossing line segments of the other color. The
points that are on the same side as x and have a dif-
ferent color than x are identified and grouped such that
the points between two consecutive segments of the cone
of x are in the same group. Since the angular order of
the points around x is pre-computed, these groups of
points are identified in O(n) time. A special group is
the group of such points which are outside the segments
of the cone of x (between the segment with the largest
angle with the horizon and that with the smallest an-
gle). Except for that special group, the line segments
formed by the points of the same group do not have any
intersections with the segments of the cone of x. On the
other hand, a line segment formed by two points from
two different groups intersects all the segments of the
cone of x that lie between (with respect to the angu-
lar order around x) these two groups. A line segment
whose both endpoints are in the special group either
intersects all the segments of the cone of x or none of
them. To find these intersections, we start checking
the points of this special group in an increasing angu-
lar order around the point x in the clockwise direction.

Figure 1: crossing/non-crossing intersections

For each such point y, we start another traversal for
the points of the special group in increasing angular or-
der in the anti-clockwise direction as long as the line
segment formed by this point and y intersects all the
segments of the cone of x. Once we reach a point in
the anti-clockwise traversal that together with y forms
a line segment which does not intersect the cone of x, we
proceed with the clockwise direction for another point
y and restart the anti-clockwise traversal.

For the example in Figure 1, p3 and p4 are in the same
group, while p1, p2 and p6 are in the special group. The
line segment whose endpoints are p2 and p6 intersects
all the line segments of the cone of x, while the line
segment whose endpoints are p1 and p2 and that whose
endpoints are p1 and p6 have no intersections with the
segments of the cone of x.

That way, we will be able to find such bichromatic
intersections for the crossing line segments of the cone of
x in O(n) time plus the time to report such intersections.
Repeating the procedure for all such points as x, we use
an extra O(n2) time for finding all the crossing/non-
crossing intersections.

Finding crossing/crossing intersections

The crossing line segments joining any point to points
with the same color on the other side form a cone of seg-
ments. The order of these segments around that point
is determined in a preprocessing phase. Consider any
two points x and y having two different colors. There
are two cases depending on the position of one of these
points with respect to the cone of segments of the other
point. For Case 1, one of the two points lies inside the
cone of segments of the other point. Assume, without



Figure 2: crossing/crossing intersections

loss of generality, that y lies in the cone of x. For all
such points as y, among the segments of the cone of
x, the segment that precedes y and the segment that
succeeds y in the sorted angular order around x can be
found and stored in O(n) time. This requires a total of
O(n2) time for all the possible pairs x and y. Once we
know these two segments for a pair of points x and y,
we can divide the segments of the cone of x to two cones
of segments and treat the problem as two problems of
Case 2, where none of the points is inside the cone of the
other point. It follows that only Case 2 is to be treated.

As shown in Figure 2, we start from the segment with
the largest angle around y among the segments of the
cone of y. The intersection of this segment with the
horizontal separating line is the point a. We traverse
the segments of the cone of y in order until we reach
the segment whose intersection with the horizontal line
is the point b. This is the last line segment whose in-
tersection with the horizontal line is to the right of the
point c, where c is the intersection of the horizontal line
with the segment of the cone of x having the smallest
angle around x. Note that all the traversed segments of
the cone of y each intersects at least one segment of the
cone of x, and hence the time spent in traversing such
segments can be charged to these intersections. Once
we reach the point b, we start traversing the segments
of the cone of y again but in the other direction this
time. This can be done by maintaining a stack that
holds these segments. Simultaneous to the reversed tra-
versal of the segments of the cone of y, we traverse the
segments of the cone of x in the same direction of in-
creasing angular order. Whenever the intersection of
the segment of the cone of y at the top of the stack with
the horizontal line is to the right of the intersection of

the next segment of the cone of x with the horizontal
line, we report that this segment of the cone of x inter-
sects all the segments of the cone of y that are still in
the stack. Then we proceed traversing the next segment
of x, and in accordance we perform as many pops to the
stack of the segments of the cone of y as necessary.

That way, we will be able to find the intersections of
the segments of the cone of x with those of the cone
of y in an O(1) time plus the time required for report-
ing these intersections. Repeating the procedure for all
possible points x and y, we use an extra O(n2) time for
finding all the crossing/crossing intersections.

3 Finding simplices containing a given point in <3

Consider the case where, instead of having line segments
between every pair of points, the points are defined on
a spherical surface and that the curve between any pair
of such points is the spherical curve thus defined. The
question is whether our algorithm still applies or not.
We give three basic properties for the defined curves
that are enough to guarantee the validity of our algo-
rithm with the same O(n2 + k) time bound:

1. The uniqueness property: For any two points x
and y, there is a unique curve Cxy defined between
these two points.

2. The non-crossing property: For any two points
x and y, if z ∈ Cxy, then Cxz ⊂ Cxy.

3. The triangular property: For any three points
x, y and z, the angle between the two tangents to
Cxy and Cxz at the point x is less than π.

It is a straightforward exercise to verify that all the
steps of the algorithm apply for such types of curves.

Given a set of n points and a point p in <3, we proceed
to find all the simplices of the point-set that contain p.
First, the n points are projected on the surface of a
unit sphere whose center is p. Second, consider an arbi-
trary plane passing by p, the center of the sphere. Each
point on the surface of the first hemisphere is colored
red. Each point on the surface of the second hemisphere
is mapped to the surface of the first hemisphere as the
other endpoint of the diameter that passes by this point;
this mapped point is colored blue. This mapping simpli-
fies the problem by such projection to a two-dimensional
surface. It is not hard to verify that four points forming
a simplex that contains p correspond to either

1. Three points of the same color, the simplex of which
contains the fourth point that has a different color.

2. Two red points defining a red segment and two blue
points defining a blue segment, and the two seg-
ments intersect.



To find simplices of the first type, we repeat for every
point to find the two-dimensional simplices, among the
points of the other color, that contain this point. This
can be done by applying n calls to the two-dimensional
algorithm given in [8] that runs in O(n) time in addition
to the time to report such simplices, for a total of an ad-
ditional O(n2) time for the n calls. To find simplices of
the second type, we apply our bichromatic-intersections
algorithm for spherical curves. This gives a total time
of O(n2 + k) for reporting these k simplices.

References

[1] P.Agarwal, Partitioning arrangements of lines: II.
Applications, Discrete Computational Geometry:

Theory and Applications, 5:(1990), 533-573.

[2] I. Balaban, An optimal algorithm for finding seg-
ment intersections, 11th ACM Symposium on Com-

putational Geometry, (1995),211-219.

[3] J. Basch, L. Guibas, and G. Ramkumar, Report-
ing red-blue intersections between two sets of con-
nected line segments, 4th European Symposium on

Algorithms, LNCS 1136 (1996), 302-319.

[4] J. Bentley and T. Ottmann, Algorithms for report-
ing and counting intersections, IEEE Transactions

on Computers C-28, (1979), 643-647.

[5] M. Bussieck and M. Lübbecke, The vertex set of
a 0/1-Polytope is Strongly P-Enumerable, Com-

putational Geometry: Theory and Applications,
11(2):(1998), 103-109.

[6] B. Chazelle, Cutting hyperplanes for divide-
and-conquer, Discrete Computational Geometry,
9:(1993), 145-158.

[7] B. Chazelle, L. Guibas, and D. Lee, The power of
geometric duality, BIT, 25:(1985), 76-90.

[8] A. Elmasry and K. Elbassioni, Output-sensitive al-
gorithms for counting and enumerating simplices
containing a given point in the plane, 17th Canadian

Conference on Computational Geometry, (2005),
248-251.

[9] H. Mairson and J. Stolfi, Reporting and count-
ing intersections between two sets of line segments,
Theoretical Foundations of Computer Graphics and

CAD, F40 NATO ASI, (1988), 307-325.

[10] A. Schrijver, Theory of Linear and Integer Pro-
gramming, Wiley-Interscience, (1986).

[11] G. Swart, Finding the convex hull facet by facet,
Journal of Algorithms, 6:(1985), 17-48.


