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Fast computation of smallest enclosing circle with center on a query line
segment
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Abstract

Here we propose an efficient algorithm for computing
the smallest enclosing circle whose center is constrained
to lie on a query line segment. Our algorithm prepro-
cesses a given set of n points P = {p1, p2, . . . , pn} such
that for any query line or line segment L, it efficiently
locates a point c′ on L that minimizes the maximum
distance among the points in P from c′. Roy et al. [11]
has proposed an algorithm for this problem that reports
the location of the center of the smallest enclosing circle
C ′ on a query line segment in O(log2 n) time. Our algo-
rithm improves the query time compared to [11]. The
reporting time for this problem is O(log n) and both the
preprocessing time and space complexities are O(n2).

1 Introduction

The problem of enclosing a set of points with a min-
imum radius circle was originally posed in 1857 by
Sylvester [13]. Here the objective is to report the cen-
ter of the minimum radius circle which can enclose all
the points in P . Elzinga and Hearn [4] first proposed
an O(n2) time algorithm. Later, Shamos and Hoey
[12], Preparata [9] and Lee [7] independently proposed
O(n log n) time algorithms to solve this problem. Fi-
nally Megiddo [8] proposed an optimal O(n) time algo-
rithm using prune-and-search technique.

Megiddo [8] studied the constrained case of this prob-
lem where the center of the smallest enclosing circle of
P lies on a given straight line. He gave an O(n) time
solution. Hurtado et. al. [6] and Bose et al. [2] con-
sidered the problem where the center of the smallest
enclosing circle of P is constrained to lie inside a given
simple polygon of size m. Their proposed algorithm
runs in O((n + m) log(n + m) + k) time, where k is the
number of intersections of the boundary of the polygon
with the furthest point Voronoi diagram of P . In the
worst case, k may be O(n2). This result is later im-
proved to O((n + m) log m + m log n) [3]. In particular,
if the polygon is a convex one, then the problem can be
solved in O((n + m) log(n + m)) time [2]. In a further
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generalization of this problem, r (≥ 1) simple polygons
with a total of m vertices are given; one of them can
contain the center of the smallest enclosing circle of the
point set P [3]. The time complexity of this version is
O((n+m) log n+(n

√
r+m) log m+m

√
r+r

3
2 log r). The

query version of this problem is studied by Roy et al.
[11]. Their proposed algorithm reports the center and
the radius of the smallest enclosing circle whose center
is constrained to lie on a query line segment in O(log2 n)
time. The preprocessing time and space complexity of
their algorithm are O(n log n) and O(n) respectively.

In this work, we will consider the problem posed
in [11]. We will reduce the query time complexity to
O(log n) by using the technique of geometric duality.
But the preprocessing time and space complexity re-
quired are both O(n2).

2 Constrained 1-center problem

Given a point set P = {p1, p2, . . . , pn} and a query line
L, our objective is to enclose P with a minimum radius
circle C ′ whose center c′ is constrained to lie on L. Note
that, the smallest circle enclosing the vertices of the
convex hull of a point set P will also enclose all the
points in P . So instead of considering the whole point
set, here we consider P as a convex polygon with vertices
{p1, p2, . . . , pn} in clockwise order.

2.1 Basic Results

The furthest point Voronoi diagram V(P ) of point set
P partitions the plane into n unbounded convex re-
gions, namely R(p0), R(p1), . . . , R(pn−1), such that for
any point p ∈ R(pj), δ(p, pj) > δ(p, pk) for all k =
0, 1, . . . , n − 1, and k 6= j. Here δ(., .) denotes the
Euclidean distance between a pair of points. The fur-
thest point Voronoi diagram V(P ) can be constructed
in O(n log n) time using O(n) space. For any point p in
the plane, we can locate the region R(pi) containing p
in O(log n) time [10]. If a single point p lies on C ′, then
the distance of p from line L is the maximum among all
other points of P . In that case, projection of the point
p on the query line L lies in R(p) and it is the center
of the minimum enclosing circle. Let pi1 , pi2 , . . . , pik

be
the vertices of P lie on the same side of L and they are
in clockwise order along the boundary of P . Observe
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that the sequence of distances between pij and line L
is unimodal. Hence, using the above data structure we
can verify whether C ′ passes through a single point in
O(log n) time. If C ′ passes through exactly two points
p1, p2 ∈ P then c′ is the intersection point of L with the
perpendicular bisector of p1 and p2. Therefore both p1

and p2 are furthest from c′. Observe that, if the circle
passes through both p1 and p2, then c′ must lie on a
line-segment e separating R(p1) and R(p2) where e is
an edge of V(P ). From now on we will consider the case
where the center c′ of the circle C ′ will be at the point
of intersection of L with an edge of V(P ). In the degen-
erate case, C ′ may pass through three or more points
of P and in that case c′ will be a vertex of V(P ). For
any point v in R(pk), ρ(v) is defined as the distance be-
tween v and pk. Let L intersect the edges e1, e2, . . . , em

of V(P ) in order at the sequence of intersection points
{a1, a2, . . . , am} respectively. Therefore ρ(ai) is the ra-
dius of the smallest enclosing circle of P with center
at ai. Observe that the function ρ(·) is convex. Note
that the center c of the unconstrained smallest enclos-
ing circle C lies on an edge or a vertex of V(P ). Thus,
V(P ) may be viewed as a directed tree T with c as root
node, all the Voronoi edges are the branches and all the
Voronoi vertices are the internal nodes of T (see Figure
1(a)). We will use π(v) to denote the directed path from
c to v in T . Observe that as we go down from c along a
path in T , the ρ value of the nodes along that path in-
creases monotonically. If L intersects a path π(v) more
than once, then the intersection point having minimum
depth is the candidate for being c′.

2.2 Preprocessing steps

For any constant α ≥ 0, let Q be a region such that
the distance between any point q ∈ Q, ρ(q) ≤ α and
for any point q ∈ Qc, ρ(q) ≥ α where Qc denotes the
complement of Q. Then we have the following result.

Lemma 1 If α > ρ(c) then Q is nonempty convex re-
gion containing the point c.

Proof. Let C(pi, α) denote the circle centered at pi (∈
P ) with radius α then Q =

n−1⋃
i=0

R(pi)
⋂

C(pi, α). If the

circle C is passing through the point p′ ∈ P then c must
be in R(p′)

⋂
C(p′, α) and hence c is in Q. Observe

that the regions R(pi)
⋂

C(pi, α) are either empty or
convex for all i and any two regions may share at most
a Voronoi edge at the boundary. Here, we omit the
proof of convexity of the region Q. ¤

Note that, the region Q is bounded by circular arcs,
and has at most n vertices on edges of Voronoi dia-
gram V(P ). Consider the case, where the query line L
intersects Q but does not intersect any Voronoi edge
belonging to the region Q. So L must be cut by a
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Figure 1: The regions Qi’s defined from V(P )

circular arc of a circle say C(pk, α). In this case the
center c′ must be the projection of the vertex pk which
is the only point to lie on the minimum enclosing cir-
cle. In Section 2.1, we have got the solution for the
above mentioned case. As we are going to consider only
the intersection points of L with the Voronoi edges, we
will consider the arcs as straight line segments. Thus
the region Q will henceforth be denoted as a convex
polygon. Let {t0, t1, . . . , tn−1} be the sequence of nodes
of T such that ρ(ti) ≤ ρ(ti+1). We store the values
{ρ(ti), for i=0, 1, . . . , n − 1} in an array P. So we
represent Qi as a convex polygon such that the dis-
tance between each point in Qi with it’s furthest point
among point set P is less than or equal to P[i]. A
vertex v of Qi is either a Voronoi vertex or a point
on a Voronoi edge of V(P ) where v’s are the intersec-
tion points of C(pj ,P[i]) and the edges of R(pj) for
(0 ≤ j ≤ n − 1). If v is on the Voronoi edge associ-
ated with R(pj) and R(pk), then d(v, pj)=d(v, pk)=P[i].
Joining consecutive vertices of each Qi in clockwise or-
der with straight lines we get n convex polygons. Note
that, Q0 ⊂ Q1 ⊂ Q2 ⊂ . . . ⊂ Qn−1 as shown in Figure
1. The function φ(L) maps to an integer m such that the
line L intersects all the polygons Qm, Qm+1, · · · , Qn−1

and does not intersect Qm−1. Note that the length of
the radius of the constrained minimum enclosing circle
lies between constant P[m − 1] and P[m]. Moreover
the center c′ lies on an Voronoi edge inside the region
Qm \ Qm−1. We will use the concept of geometric du-
ality to compute φ(L).

3 Duality ideas

Consider a non-vertical line l : y = a · x + b in a plane
where a and b are scalars. Observe that the slope and
the intercept (a, b) uniquely define the line l in the pri-
mal plane. A simple duality transform [1] maps objects
from the primal plane to the dual plane. The line l in
primal plane is mapped to the point l′ = (a,−b) in the
dual plane. A point p=(px, py) in the primal plane is
mapped to a line p′ : y = px · x− py in the dual plane.
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Dual mapping is incidence and order preserving: p ∈ l
if and only if l′ ∈ p′; and p lies above l if and only if l′

lies above p′.

3.1 Dual mapping of a convex polygon

Consider a convex polygon Q with vertices
{q0, q1, . . . , qn−1} in clockwise order in the primal
plane. Upperhull of Q can be expressed as a sequence
of vertices on the path from the leftmost vertex of Q
to the rightmost vertex along the boundary of Q in
clockwise direction and hull edges are the line segments
joining the adjacent vertices in the sequence. Let
UH(Q) denote the upperhull of Q. Similarly LH(Q)
denotes the lowerhull of Q and is expressed in similar
manner. Let C ′u and C ′l denote the set of the dual
lines of the vertices of UH(Q) and LH(Q) respectively.
A(C ′u) represent the arrangement of C ′u in dual plane
where each element q′i ∈ C ′u contributes an edge to the
unique bottom cell of arrangement (see Figure 2). This
cell is the intersection of the half-planes bounded by
the lines in C ′u. The boundary of the bottom cell is the
lower envelope of the set of lines C ′u and is expressed
as ζ ′u. Note that the sequence of vertices of UH(Q)
are in order of increasing x-coordinate. As the slope of
q′i is the x-coordinate of qi, the clockwise sequence of
vertices of UH(Q) produces an anticlockwise sequences
of edges of ζ ′u. Therefore the upper hull of a set of
vertices UH(Q) is same as the lower envelope of the
set of lines of Cu. By symmetry, lower hull LH(P) will
be mapped to upper envelope ζ ′l . Now the chains ζ ′l
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Figure 2: (a) a convex polygon and (b) dual transform
of the polygon

and ζ ′u partitions the plane into three regions Q+, Q′

and Q−. Each point α ∈ Q+ lies above the chain ζ ′l and
each point α ∈ Q− lies below the chain ζ ′u (see Figure
2). We denote the region bounded by ζ ′l and ζ ′u as Q′.
If l′ be any point inside the region bounded by the
chains ζ ′l and ζ ′u in the dual plane, l′ can be mapped to
it’s dual line l which intersects the boundary of Q in
the primal plane. If line l does not intersect Q, all the
vertices of Q are either above l or all the vertices are
below the l. It is possible if and only if l′ lies outside
the region Q′. It is easy to observe that, a point p

inside Q maps to line p′ inside the region Q′ and p′

does not intersect ζ ′l or ζ ′u.
The lowerhull and upperhull of convex polygons
Q0, Q1, . . . , Qn−1 map to the pairs of chains (ζ ′l0 , ζ

′
u0

),
(ζ ′l1 , ζ

′
u1

), . . .,(ζ ′ln−1
, ζ ′un−1

) respectively in the dual
plane.

Lemma 2 Let the sets {ζ ′l0 , ζ ′l1 , . . . , ζ ′ln−1
} and

{ζ ′u0
, ζ ′u1

, . . . , ζ ′un−1
} be denoted by ∆1 and ∆2 respec-

tively. Then,

(i) any pair of chains from the set ∆1 ∪ ∆2 are non-
intersecting,

(ii) each chain in the set ∆1 lies above ∆2,
(iii) for any i > j, ζ ′li lies above ζ ′lj and similarly ζ ′ui

lies below ζ ′uj
.

Proof. Let two chains ζ ′li and ζ ′lj for (i < j) have a
common intersection point. Then we can always detect
two points α and β in the dual plane such that α lies
above ζ ′li but below ζ ′lj and β lies above ζ ′lj and below
ζ ′li . Then the corresponding line α′ in the primal plane
intersect Qj but does not intersect Qi. Similarly β′

intersect Qi but does not intersect Qj . This contradicts
the containment relationship of these two polygons. As
Qi is entirely contained in Qj the two envelopes cannot
cross. Rest part of the proof is omitted here. ¤
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Figure 3: (a) a set of concentric convex polygons and
(b) their dual transformation

Now the interior region of the convex polygons
Q0, Q1, . . . , Qn−1 in the primal plane are mapped to the
region bounded by the pair of chains (ζ ′l0 , ζ

′
u0

), (ζ ′l1 , ζ
′
u1

),
. . ., (ζ ′ln−1

, ζ ′un−1
) respectively in the dual plane. From

Lemma 2, Q′
0 ⊂ Q′

1 ⊂ Q′2 ⊂ . . . ⊂ Q′n−1.

Lemma 3 If φ(L) = i, the point L′ in the dual plane
corresponding to the line L, will be located in Q′

i \Q′
i−1.

The number of vertices in each polygon Qi is at most
n. The polygon Qi can be constructed by identifying
all the points in Voronoi edges which are P[i] distance
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apart from its furthest point among P . The convex
hull of these points gives the polygon Qi replacing the
boundary arcs by line segments. There can be at most
n convex polygons and the number of vertices in each
convex polygon is at most n− 2.

Lemma 4 All the convex polygons and their image in
the dual plane can be constructed in O(n2) time and
space.

4 Algorithm for answering Query

In the preprocessing phase we have constructed a set of
concentric convex polygons {Q0, Q1, . . . , Qn−1}. Using
duality principles we map each Qi to it’s dual image
{ζ ′li , ζ ′ui

} in the dual plane where the region bounded by
{ζ ′li , ζ ′ui

} is Q′i. Our algorithm for finding c′ proceeds in
two phases as follows:

• Phase 1: Compute φ(L) that is, locate the region
Q′k which contains the dual point L′ and L′ does
not lie inside Q′k−1.

• Phase 2: Find the intersection points of L and the
edges of V(P ) which lie inside Qk. The intersection
point whose distance is minimum from it’s furthest
point is the candidate for c′.

We implement Phase 1 as a point-location query in a
given two-dimensional monotone subdivision [5]. As
all the chains are x-monotone the sequence of chains
{ζ ′ln−1

, ζ ′ln−2
, . . . , ζ ′l0 , ζ

′
u0

, ζ ′u1
, . . . , ζ ′un−1

} partitions the
plane into 2n+1 disjoint monotone regions. Let the
above set of chains be denoted as S whose elements are
renamed as {s1, s2, . . . , s2n} and partitions the plane
into a set of regions < = {r0, r1, . . . , r2n}, where
ri ∪ r2n−i denotes the region Q′

n−i \ Q′n−i−1, for i =
1, 2, . . . , n− 1. We say a region ri is below rj and write
ri ¿ rj for i < j, if i 6= j and for any two points
p=(π1, π2) and q=(π1, ψ2) on ri and rj respectively, we
have ψ2 ≤ π2. So we have
r0 ¿ s1 ¿ r1 ¿ s2 ¿ r2 . . . ¿ s2n ¿ r2n.
Therefore, in the monotone subdivision the regions are
vertically ordered. A balanced binary search tree data
structure can be constructed using O(n2) time and
space similar to the method described in [5], where each
node v stores a layered dag that is a list obtained by
merging a chain from S representing that node along
with layered dags of its children. Using the structure,
φ(L) can be computed in O(log n) time.

Now, we can locate the points of intersection between
Qφ(L) and the line L in O(log n) time. The vertices
of Qφ(L) is partitioned into two group say, G1 and G2

depending on their position on the (left and right) side
of L. Observe that, all the edges from e1, e2, . . . , en of
V(P ) which are intersected by L in the region Qφ(L)

must pass through the vertices of same group, that is
either the vertices in G1 or G2 but not both. Again, the

sequence of ρ values at the ordered set of intersection
points is unimodal. Therefore, in O(log n) search we can
identify the intersection point having minimum ρ value
and consequently the center of the minimum enclosing
circle c′ on L.

Theorem 5 Given a point set P = {p1, p2, . . . , pn} and
a query line L, the minimum enclosing circle having
center on L can be reported in O(log n) time. Both the
preprocessing time and space complexities are O(n2).

In case L is a line segment, then we first locate the
center c′ on the line containing L. If c′ is not on the
line segment L, then one of the end points of L nearer
to c′ is the solution.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational Geometry - Algorithms
and Applications, Springer-Verlag, 1997.

[2] P. Bose and G. Toussaint, Computing the constrained
Euclidean, geodesic and link center of a simple polygon
with applications, Proc. of Pacific Graphics International,
pp. 102-112, 1996.

[3] P. Bose and Q. Wang, Facility location constrained to
a polygonal domain, Theoretical Informatics, 5th Latin
American Symposium, LNCS 2286, pp. 153-164, 2002.

[4] J. Elzinga and D. W. Hearn, Geometrical solutions to
some minimax location problems, Transp. Sci., vol. 6,
pp. 379-394, 1972.

[5] H. Edelsbrunner, L. J. Guibas and J. Stolfi, Optimal
point location in a monotone subdivision, SIAM Journal
on Computing, pp. 317 - 340, 1986.

[6] F. Hurtado, V. Sacristan and G. Toussaint, Facility lo-
cation problems with constraints, Studies in Locational
Analysis, vol. 15, pp. 17-35, 2000.

[7] D.T. Lee, Furthest neighbour Voronoi diagrams and ap-
plications, Report80-11-FC-04, Dept. Elect. Engrg. Com-
put. Sci., Northwestern Univ., Evanston, IL, 1980.

[8] N. Megiddo, Linear-time algorithms for linear program-
ming in R3 and related problems, SIAM J. Comput., vol.
12, pp. 759-776, 1983.

[9] F. P. Preparata, Minimum spanning circle, Technical
report, Univ. Illinois, Urbana, IL, in Steps into Computa-
tional Geometry, 1977.

[10] F. P. Preparata and M. I. Samos, Computational Geom-
etry: An Introduction, Second edition, Springer Verlag,
1990.

[11] S. Roy, A. Karmakar, S. Das and S. C. Nandy, Con-
strained Minimum Enclosing Circle with Center on a
Query Line Segment, Proc. Mathematical Foundation of
Computer Science, pp. 765-776, 2006.

[12] M.I. Shamos and D. Hoey, Closest-point problem, Proc.
16th Annual IEEE Sympos. Found. Comput. Sci., pp. 151-
162, 1975.

[13] J. J. Sylvester, A question in the geometry of situation,
Quarterly Journal of Mathematices, pp. 1-79, 1857.


