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Data Structures for Range-Aggregate Extent Queries
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Abstract

We consider a generalization of geometric range search-
ing, with the goal of generating an informative “sum-
mary” of the objects contained in a query range via the
application of a suitable aggregation function on these
objects. We provide some of the first results for func-
tions such as closest pair, diameter, and width that mea-
sure the extent (or “spread”) of the retrieved set. We
discuss a subset of our results, including closest pair
queries on point-sets in the plane and on random point-
sets in R

d (d ≥ 2) and guaranteed-quality approxima-
tions for diameter and width queries in the plane, all for
axes-parallel query rectangles.

1 Introduction

In a traditional instance of range searching, we are given
a set, S, of geometric objects and wish to retrieve the
subset S′ contained in some query object Q (see [1] for
a survey). Often, however, we desire a more informa-
tive “summary” of S′, such as an order-statistic. (For
instance, the average or the median price of homes (the
“objects”) in different neighborhoods (the “queries”) of
a city.) This can be done by applying, on S′, an aggre-
gation function such as count, sum, min, max, mean,
median, mode, and top-k that is computed on a set
of suitable weights defined on the objects (e.g., house
prices). Prior work on such range aggregate query prob-
lems includes [3, 6, 8, 11, 15, 16, 17, 19, 18].

We present results for a new class of aggregation func-
tions, including closest pair, diameter, and width, that
measure the extent or “spread” of the objects in S′. Ex-
tent measures have applications in collision detection,
shape-fitting, clustering etc. [2] and, instead of com-
puting the measure on the entire set, it is often both
sufficient and more efficient to “zoom in” on a query
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region and compute the measure only for this region
(e.g., the closest pair of aircraft in a prescribed region
of airspace).

A major challenge with extent functions is that (un-
like, say, count) they are not decomposable efficiently,
i.e., the answer for S′ cannot be inferred quickly from
answers for subsets that partition S′. (For instance, the
closest pair in S′ cannot be inferred in sublinear time
from the closest pairs for subsets S′

1 and S′
2 that parti-

tion S.) Despite this, we obtain space- and query-time-
efficient solutions (exact or guaranteed-quality approx-
imations) to several range-aggregate extent queries, as
summarized in Table 1. Our results are based on mul-
tilevel range trees, Voronoi Diagrams, Euclidean Mini-
mum Spanning Trees, and generating sparse represen-
tations of candidate output sets and proving (expected)
upper bounds on their size.

In prior related work, Shan et al. [12] gave empiri-
cal results for range-aggregate closest pair with axes-
parallel query rectangles, based on R-trees. Gupta [7]
gave a solution in R

1 (resp., R
2) with query time O(1)

using O(n) space (resp., O(log3 n) query time using
O(n2 log3 n) space). Sharathkumar and Gupta [14] im-
proved the 2D result to O(log3 n) query time using
O(n log3 n) space and in [13, 14], showed how to decide
in O(log2 n) time and O(n log2+ǫ n) space if the closest
pair in a query rectangle was within a user-specified tol-
erance. To our knowledge, there is no prior work on the
range-aggregate diameter or width problems.

Due to space limitations, we present only results #1,
2, 4, and 5 in Table 1 and omit proofs and most details.

2 Computing the closest pair in a query rectangle

We wish to preprocess a planar point-set S so that for
a query rectangle Q, the closest pair in S ∩ Q can be
reported. We develop our solution by successively gen-
eralizing solutions for simpler queries.

Computing the closest pair in a quadrant or vertical

strip: First, let Q be a (north-east) quadrant. Let G
be the graph with vertex set S where points p and q are
connected by an edge iff (p, q) is the closest pair in S∩Q
for some Q. G can be shown to be a plane graph and so
has O(n) edges, even though the number of “distinct”
north-east quadrants (w.r.t. S) is Θ(n2).
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# Problem Query Space

1 Closest-pair in rect. log2 n n log5 n

(points in R
2)

2 Closest-pair in d-rect. log2d n n log3d−2 n

(random points in R
d) (expected)

3 Closest-pair in disk n2/3+ǫ n1+ǫ

(random points in R
2) (expected) (expected)

4 Diameter in rect. k log5 n (n + (n/k)2) log2 n

(points in R
2) (1 ≤ k ≤ n)

5 Approx. diameter in 1√
δ

log2 n 1√
δ

n log n

rect. (points in R
2) 1√

δ
log n + log3 n n log2 n

(variable δ)

6 Approx. width in 1√
δ

log3 n 1√
δ

n log2 n

rect. (points in R
2)

7 Closest-pair “partly in” logd n n logd n

hyper-rect. (points in R
d)

8 Closest-pair “partly in” n1−1/d+ǫ n1+ǫ

halfspace (points in R
d)

9 Closest-pair “partly in” n1−1/(d+1)+ǫ n1+ǫ

ball (points in R
d)

Table 1: Summary of results. Query rectangles are axes-
parallel. “Random points” means that the points are
chosen independently and uniformly at random in the
unit-square. “Partly in” means that one point in the
closest pair is in the query and the other is outside.
Here k is a tunable parameter, 1 ≤ k ≤ n, δ is an error
tolerance parameter 0 < δ < 1, ǫ > 0 is a constant, and
d ≥ 2 is a constant. “Variable δ” means that δ is part
of the query; otherwise, it is fixed.

For each edge e = (p, q) of G, we define the pla-
nar point re = (min(px, qx), min(py, qy)), with weight
d(p, q), where d(·, ·) is the Euclidean distance function.
Let R = {re : e is an edge in G}. Our problem is
equivalent to reporting the point of minimum weight
in R ∩ Q, which can be done with a 2D range tree and
fractional cascading.

Lemma 1 A planar point-set S can be stored in a
structure of size O(n log n) such that the closest pair
in any north-east query quadrant Q can be reported in
O(log n) time.

For a query vertical strip, we will use the following:

Lemma 2 ([14]) S can be stored in a structure of size
O(n log2 n) such that the closest pair in any vertical
query strip can be reported in O(log n) time.

The opposite-quadrant lemma: We can localize the
closest-pair between points in two opposite quadrants
as follows. Let A (resp. B) be the points of S strictly
in the first (resp. third) quadrant Let A5 ⊆ A (resp.
B5 ⊆ B) be the min(5, |A|) (resp. min(5, |B|)) points
that are L∞-closest to the origin.

Lemma 3 Let (p, q) be the closest pair in S and let
p ∈ A and q ∈ B. Then, p ∈ A5 and q ∈ B5.

Computing L∞-neighbors in a quadrant: Assume S
lies strictly in the first quadrant. Given the south-west

quadrant Qq of a query point q in the first quadrant,
we wish to report the min(5, |S ∩Qq|) points in S ∩ Qq

that are L∞-closest to the origin.

Let A be the set of points of S on or below the diag-
onal y = x, and let B := S \ A. Then, for each point
p in A (resp. B), the L∞-distance between p and the
origin is equal to the x-coordinate (resp. y-coordinate)
of p. This leads to the following structure to answer
queries when q is, wlog, on or above the diagonal y = x:
We maintain (i) an array storing the points of A sorted
by x-coordinates, and (ii) an array storing the points of
B sorted by x-coordinates; with each entry p in this ar-
ray, we store the min(5, |Bp|) lowest points in Bp, where
Bp := {b ∈ B : bx ≤ px}.

Lemma 4 A set S of points strictly in the first quad-
rant can be stored in a structure of size O(n) such that
for any query point q strictly in the first quadrant, the
min(5, |S ∩Qq|) points in S ∩Qq that are L∞-closest to
the origin can be reported in O(log n) time.

Computing the closest pair in an anchored 3-sided

rectangle: Let ℓ be a fixed vertical line. An anchored
3-sided rectangle Q is a rectangle of the form Q = [a, b]×
[c,∞) that intersects ℓ. Given Q, we wish to report the
closest pair in S ∩ Q.

Let T be a balanced binary search tree storing S at
its leaves, by y-order. Let u be the highest node on the
right spine of T such that the horizontal line ℓ′u that
separates the left and right subtrees of u intersects Q.
Point Xu = ℓ ∩ ℓ′u partitions the plane into four quad-
rants. Let u1 and u2 be the left and right children of u,
respectively. Let Sl

u1
(resp. Sr

u2
) be the points of Su1 to

the left (resp. right) of ℓ. (Throughout, Sv denotes the
subset of S stored at the leaves of v’s subtree.) Define
Sl

u2
and Sr

u2
similarly w.r.t Su2 .

Six cases exist for the closest pair (p, q) in S∩Q. (1) p
and q are both to the left of ℓ: Then (p, q) is the closest
pair of Sl

u1
∪ Sl

u2
which is in the north-east quadrant

of the point (a, c). We find (p, q) by storing at u the
structure of Lemma 1 for Sl

u1
∪ Sl

u2
. (2) p and q are

both to the right of ℓ: This is is symmetric to (1). (3)
p and q are both above ℓ′u: Then (p, q) is the closest
pair of Sl

u2
∪ Sr

u2
which is in the strip bounded by the

vertical lines through (a, c) and (b, c). We find (p, q) by
storing at u the structure of Lemma 2 for Sl

u2
∪ Sr

u2
.

(4) p (resp. q) is in the south-west (resp. north-east)
quadrant of Xu: By storing at u appropriate variants of
the structure of Lemma 4, and using Lemma 3, we can
compute 25 point-pairs, such that (p, q) is among them.
(5) p (resp. q) is in the north-west (resp. south-east)
quadrant of Xu: This is symmetric to (4). (6) p and q
are both below ℓ′u: Then both points are in the subtree
of u1. We can find (p, q) by recursively querying this
subtree.
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Lemma 5 S can be stored in a structure of size
O(n log3 n) the closest pair in any anchored 3-sided
query rectangle Q can be reported in O(log2 n) time.

Computing the closest pair in an anchored rectangle:

Let ℓ be a fixed horizontal line. An anchored rectangle
Q is a rectangle of the form [a, b]× [c, d] that intersects
ℓ. Given Q, we wish to report the closest pair in S ∩Q.

Let T be a balanced binary search tree storing S at
its leaves, by x-order. Using T , we can reduce our query
to four queries for anchored 3-sided rectangles and two
closest pair queries for opposite quadrants.

Lemma 6 S can be stored in a structure of size
O(n log4 n) such that the closest pair in any anchored
query rectangle Q can be reported in O(log2 n) time.

General closest pair rectangle queries: Given a gen-
eral query rectangle Q, we wish to report the closest
pair in S ∩ Q.

Let T be a balanced binary search tree storing S at
its leaves, by y-order. For each internal node u of T ,
define the horizontal line ℓ′u as before. We store at u
the structure of Lemma 6 for Su, to answer closest pair
queries for rectangles anchored w.r.t. ℓ′u.

Given Q, we search down T to the first node u such
that ℓ′u intersects Q. Q is anchored w.r.t. ℓ′u, so we use
the structure for Su to find the closest pair in S ∩ Q.

Theorem 7 A set S of n points in the plane can be
stored in a structure of size O(n log5 n) such that for
any axes-parallel query rectangle Q, the closest pair in
S ∩ Q can be reported in O(log2 n) time.

3 Closest pair rectangle queries on randomly dis-

tributed points

Let S be a set of n points in the plane, chosen inde-
pendently and uniformly at random in the unit-square.
We obtain a data structure of expected size O(n log4 n)
and query time O(log4 n) time. Though not as efficient,
asymptotically, as the one in [14], our solution is simple
and practical, and, moreover, extends naturally to any
fixed dimension d > 2.

Our approach is to precompute each point-pair (p, q),
with p, q ∈ S, that is the closest pair for at least one
query rectangle. We then store each such pair as a
weighted point in a four-dimensional range tree. The
four dimensions are the x- and y-coordinates of p and
of q; the weight is the Euclidean distance d(p, q). Given
a query rectangle Q, we find the closest pair in S∩Q by
doing a range-minimum query [5] on the tree with the
hyper-rectangle Q × Q.

Formally, let Q be the (infinite) set of all axes-parallel
query rectangles. Let Λ be the number of pairs (p, q),
with p, q ∈ S and p to the left of q, such that there is

a rectangle Q ∈ Q for which (p, q) is a closest pair in
S ∩ Q. Then our structure uses O(Λ log3 n) space and
has a query time of O(log4 n). Moreover, it can be built
in time equal to that needed to compute the Λ pairs
plus O(Λ log3 n) time. Thus, if Λ is “small”, then this
will be an efficient and practical solution.

Unfortunately, Λ can be Θ(n2) in the worst case.
(Take two sets of n/2 points on the boundary of the
unit-circle, in opposite quadrants. Every pair of points,
one from each set, contributes 1 to Λ.) However, if the
points of S are chosen at random then the expected
value of Λ is O(n log n), as seen below.

Lemma 8 Let (p, q) be an ordered point-pair, with
p, q ∈ S and p to the left of q. This pair contributes
1 to Λ iff the rectangle, R(p, q), that has pq as a diago-
nal is empty, i.e., contains no point of S \ {p, q}.

Thus, Λ is the number of empty rectangles R(p, q) in
Lemma 8. If the points of S are chosen at random, then
they are “well-distributed” and there will not be many
empty rectangles R(p, q), as formalized by Lemma 9.
(This result also appears, without proof, in [4].)

Lemma 9 For a set S of n points that are chosen inde-
pendently and uniformly at random in the unit-square,
the expected value, E(Λ), of Λ is O(n log n).

Thus, the closest pair in S ∩ Q can be computed
in O(log4 n) time using a structure of expected size
O(n log4 n).

This approach generalizes to R
d, for any fixed

d ≥ 3, based on a result from [10] that there are
O(n logd−1 n/(d− 1)!) so-called direct domination pairs
(p, q) among n points drawn independently at random
from the unit-hypercube in R

d, since each such pair de-
fines the diagonal of an empty hyper-rectangle. Thus Λ
is O(n logd−1 n). Our problem reduces to storing each of
the Λ pairs (p, q) as a weighted point in a 2d-dimensional
range tree. We conclude:

Theorem 10 A set S of n points chosen independently
and uniformly at random in the unit-hypercube in R

d,
d ≥ 2, can be stored in a structure of expected size
O(n log3d−2 n) so that the closest pair in any axes-
parallel query rectangle can be reported in O(log2d n)
time.

4 Approximating the diameter in a query rectangle

Let S be a set of n points in the plane and let δ be a
fixed real, 0 < δ < 1. Given a query rectangle Q, we
wish to report a pair of points in S ∩ Q whose distance
is at least (1 − δ) times the diameter of S ∩ Q.

Let β(δ) =
⌈

2 arcsin(1−δ)
π−2 arcsin(1−δ)

⌉

; β(δ) = O(1/
√

δ) if δ

converges to zero. Our approach uses the following:
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Lemma 11 ([9]) Choose 2(β(δ) + 1) equally-spaced
vectors around the unit-circle. For each vector di, let
pi (resp. qi) be the point of S that is extreme in direc-
tion di (resp. −di). Let D be the diameter of S and let
∆ = maxi d(pi, qi). Then 1 − δ ≤ ∆/D ≤ 1.

Our structure is a 2D range tree on S. With each
node v in each secondary tree, we store the O(β(δ)) =
O(1/

√
δ) point-pairs of Lemma 11 for Sv. The space

used is O((1/
√

δ)n log n).
Given Q, we compute a set C of O(log2 n) canon-

ical nodes v in the secondary structures of the range
tree such that S ∩ Q = ∪v∈CSv. Consider any of the
O(β(δ)) direction pairs di and −di. We compute the
extreme points of S∩Q in directions di and −di by com-
puting the extreme points among those stored with the
canonical nodes for this direction pair. By Lemma 11,
the farthest pair so computed over all direction pairs is
an approximation to the diameter of S ∩ Q.

Theorem 12 A set S of n points in the plane can
be stored in a structure of size O((1/

√
δ)n log n), so

that for any axes-parallel query rectangle Q, a (1 − δ)-
approximation to the diameter of S ∩Q can be reported
in O((1/

√
δ) log2 n) time, where 0 < δ < 1.

This solution extends to queries where δ comes as an
input parameter along with Q. The idea is to use the
range tree on S to also compute the convex hull of the
S∩Q (by repeated merging of convex hulls stored at the
canonical nodes) and then finding the extremal points
for each of the O((1/

√
δ) directions—in logarithmic time

per merge and per direction. This yields the bounds
shown in Table 1.

5 Approximating the width in a query rectangle

The width of a planar point-set S is the width of a nar-
rowest enclosing strip. For a query rectangle Q, we wish
to report a strip enclosing S∩Q of width at most (1+δ)
times the width of S ∩ Q, for a fixed real δ, 0 < δ < 1.

Let γ(δ) =
⌈

π
2 arccos(1/(1+δ))

⌉

; γ(δ) = O(1/
√

δ) if δ

converges to zero. Our approach uses the following:

Lemma 13 ([9]) Let S0 = S and Si be a copy of S ro-
tated clockwise around the origin from Si−1 by an angle
π/γ(δ), 1 ≤ i ≤ γ(δ). For 0 ≤ i ≤ γ(δ), let Li (resp.
Ri) be the downward (resp. upward) convex chain dual
to the upper (resp. lower) hull of the convex hull of
Si. Let ωL

i (resp. ωR
i ) be the minimum distance be-

tween any vertex of Li (resp. Ri) and any point ver-
tically below (resp. above) it on Ri (resp. Li). Let
Ω = mini{ωL

i , ωR
i } and let W be the width of S. Then

1 ≤ Ω/W ≤ 1 + δ.

Both ωL
i and ωR

i can be computed in O(log2 n) time if
Li and Ri are stored in balanced binary search trees [9].

We store S in a range tree. Each node v in each
secondary tree stores 1+γ(δ) instances of the structure
of Lemma 13 for Sv, where the i-th instance is a pair
of balanced binary search trees built on the dual chains
Li(v) and Ri(v) associated with the i-th rotated copy
of Sv. The space is O((1/

√
δ)n log2 n).

Given Q, we compute, in O(log2 n) time, a set C
of O(log2 n) canonical nodes v in the secondary struc-
tures such that S ∩ Q = ∪v∈CSv. For each i, we
merge the Li(v)’s for all v ∈ C into a single chain in
O((1/

√
δ) log3 n) time. Similarly, for the Ri(v)’s. From

these O(1/
√

δ) pairs of chains, we compute the mini-
mum vertical distance between each pair and take the
smallest as Ω.

Theorem 14 A set S of n points in the plane can be
stored in a structure of size O((1/

√
δ)n log2 n) such that

for any query rectangle Q, a (1 + δ)-approximation to
the width of S ∩ Q can be reported in O((1/

√
δ) log3 n)

time, where 0 < δ < 1.
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