
Data Structures for Range-Aggregate Extent Queries

Prosenjit Gupta∗ Ravi Janardan† Yokesh Kumar† Michiel Smid‡

July 22, 2008

Abstract

A fundamental and well-studied problem in computational geometry is range searching,
where the goal is to preprocess a set, S, of geometric objects (e.g., points in the plane) so
that the subset S′ ⊆ S that is contained in a query range (e.g., an axes-parallel rectangle) can
be reported efficiently. However, in many situations, what is of interest is to generate a more
informative “summary” of the output, obtained by applying a suitable aggregation function
on S′. Examples of such aggregation functions include count, sum, min, max, mean, median,
mode, and top-k that are usually computed on a set of weights defined suitably on the objects.
Such range-aggregate query problems have been the subject of much recent research in both the
database and the computational geometry communities.

In this paper, we further generalize this line of work by considering aggregation functions
on point-sets that measure the extent or “spread” of the objects in the retrieved set S′. The
functions considered here include closest pair, diameter, and width. The challenge here is that
these aggregation functions (unlike, say, count) are not efficiently decomposable in the sense
that the answer to S′ cannot be inferred easily from answers to subsets that induce a partition
of S′. Nevertheless, we have been able to obtain space- and query-time-efficient solutions to
several such problems including: closest pair queries with axes-parallel rectangles on point
sets in the plane and on random point-sets in R

d (d ≥ 2), closest pair queries with disks on
random point-sets in the plane, diameter queries on point-sets in the plane, and guaranteed-
quality approximations for diameter and width queries in the plane. Our results are based
on a combination of geometric techniques, including multilevel range trees, Voronoi Diagrams,
Euclidean Minimum Spanning Trees, sparse representations of candidate outputs, and proofs of
(expected) upper bounds on the sizes of such representations.

∗Mentor Graphics, Hyderabad 5000082, India and International Institute of Information Technology,
Gachibowli, Hyderabad 500032, India. Research supported in part by grants SR/S3/EECE/22/2004 and
DST/INT/US/NSF-RPO-0155/04 from the Department of Science and Technology, Government of India. Email:
prosenjit gupta@acm.org

†Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
Email: {janardan,kumaryo}@cs.umn.edu. Research supported, in part, by the National Science Foundation under
grant INT–0422775 and CCF–0514950.

‡School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. Email:
michiel@scs.carleton.ca. Research supported by NSERC.

1 Introduction

Range searching is an important and well-studied class of problems in computational geometry. In
a typical instance of this problem, called range reporting, we are given a set, S, of geometric objects
(say, points in the plane) that we wish to preprocess into a data structure, so that given any query
object Q (say, an axes-parallel rectangle), the subset S′ ⊆ S that is contained in Q can be reported
efficiently. (Thus, S′ = S ∩ Q.) The paper by Agarwal and Erickson [1] provides a comprehensive
survey of geometric range searching.

There are situations where it is not sufficient to merely report the objects of S′; instead, what
is desired is a more informative “summary” of the output, such as an order-statistic on S′. For
instance, a realtor would be interested in knowing the average or the median price of homes (the
“objects”) in different neighborhoods (the “queries”) of a large city. This can be accomplished
by applying a suitable function, called an aggregation function, on S′. Examples of aggregation
functions include count, sum, min, max, mean, median, mode, and top-k that are usually computed
on a set of weights defined suitably on the objects (in the above example, the weights are house
prices). Such range-aggregate query problems have been the subject of much recent research in
both the database and the computational geometry communities; see, for instance, [3, 8, 10, 14,
20, 22, 23, 24, 25].

In this paper, we make further contributions to range-aggregate query processing by considering
aggregation functions that measure the extent or “spread” of the objects in S′. These functions
include closest pair, diameter (or farthest pair), and width. Extent measures find applications in
collision detection, shape-fitting, clustering etc. [2]. Often, instead of computing the measure on
the entire set—which can be both expensive and unnecessary—it is more useful to “zoom in” on a
region of interest that is specified by a query range and compute quickly the desired measure only
for this region. (For example, given the instantaneous positions of all aircraft over a busy airport,
it is important that an air-traffic controller be able to determine rapidly the closest pair within any
prescribed region of airspace, in order to identify potential collisions.)

A major challenge in working with these aggregation functions is that they are not decomposable
efficiently, in the sense that the answer for S′, under one of these funtions, cannot be inferred quickly
from answers for subsets that form a partition of S′. (For instance, given a partition of S′ into sets S′

1

and S′
2, the closest pair in S′ cannot be inferred in sublinear time from the closest pair information

for S′
1 and S′

2.) Despite this, however, we have been able to obtain space- and query-time-efficient
solutions (either exact or approximate solutions with guaranteed error bounds) to several range-
aggregate extent queries, as summarized in Table 1. Our results are based on a combination of
techniques, including the use of multilevel range trees, Voronoi Diagrams, Euclidean Minimum
Spanning Trees, generating sparse representations of candidate output sets, and establishing proofs
of (expected) upper bounds on the sizes of such representations.

Shan et al. [17] were among the first to consider the range-aggregate closest pair problem.
For axes-parallel query rectangles, they gave a solution based on R-trees and showed that this
performed well in practice; however, they did not provide a theoretical analysis of their method.
Gupta [9] obtained a solution to this problem in one-dimension (resp., two-dimensions), again for
axes-parallel query ranges, where the query time was O(1) using O(n) space (resp., O(log3 n) query
time using O(n2 log3 n) space). The two-dimensional result was improved recently by Sharathkumar
and Gupta [19] to O(log3 n) query time using O(n log3 n) space. In [18, 19], they also considered a
variant (motivated by applications in VLSI design rule checking [21]), where the goal is to determine
if the closest pair in an axes-parallel query rectangle is within a user-specified tolerance; their

1

Objects Query Aggregation Query Space Sec.
function time

Points in R
2 Rect. Closest pair log2 n n log5 n 2

Random points Hyper- Closest pair log2d n n log3d−2 n 3
in R

d (d ≥ 2) rect. (expected)

Random points Disk Closest pair n2/3+ǫ n1+ǫ 4
in R

2 (expected) (expected)

Hyper- logd n n logd n
rect.

Points in R
d Half- Closest pair n1−1/d+ǫ n1+ǫ 5

(d ≥ 2) space (“partly in” query)

Ball n1−1/(d+1)+ǫ n1+ǫ

Points in R
2 Rect. Farthest pair k log5 n (n + (n/k)2) log2 n 6

1 ≤ k ≤ n

Points in R
2 Rect. (1 − δ)-farthest 1√

δ
log2 n 1√

δ
n log n 7

pair

(1 − δ)-farthest 1√
δ

log n + log3 n n log2 n

pair; variable δ

Points in R
2 Rect. (1 + δ)-width 1√

δ
log3 n 1√

δ
n log2 n 8

Table 1: Summary of results. All results are big-O and, unless noted otherwise, worst-case. Query

rectangles are axes-parallel. By “random points” we mean that the points are chosen independently

and uniformly at random in the unit-square. For the result in Section 5, by “partly in” we mean

that one point in the closest pair is in the query and the other is outside. Here k is a tunable

parameter, 1 ≤ k ≤ n, δ is an error tolerance parameter 0 < δ < 1, ǫ > 0 is a constant, and d ≥ 2
is a constant. By “variable δ”, we mean that it is part of the query; otherwise, it is fixed.

approach answered queries in O(log2 n) time using O(n log2+ǫ n) space, for any constant ǫ > 0. To
the best of our knowledge, there has been no previous work on the range-aggregate versions of the
diameter or width problems.

2 Computing the closest pair in a query rectangle

Let S be a set of n points in the plane. We will show how to preprocess the points of S into a data
structure such that queries of the following form can be answered: Given an axes-parallel rectangle
Q, report the closest pair in S ∩ Q. We will solve this problem using a multi-level tree structure,
where higher levels are used to solve simpler variants of this query problem. We will describe this
structure in a bottom-up fashion. Thus, we start with the simplest version of the query problem,
and then successively solve more general versions of the problem.

Computing the closest pair in a quadrant or vertical strip: We start by showing how to
answer queries of the form “given a north-east query quadrant Q, report the closest pair in S ∩Q”.
Let G be the graph with vertex set S in which any two points p and q are connected by an edge
if and only if there exists a north-east quadrant Q such that (p, q) is the closest pair in S ∩ Q. It

2

can be shown that G is a plane graph and, therefore, consists of O(n) edges. In other words, even
though the total number of “distinct” north-east query quadrants is Θ(n2), the number of distinct
answers to these queries is only O(n).

For each edge e = (p, q) of the graph G, we define the following point re in the plane: re =
(min(px, qx),min(py, qy)). Let R = {re : e is an edge in G}. We give each point re of R a weight
which is defined to be the distance between the endpoints of e. Then, answering closest pair queries
in a north-east quadrant is equivalent to answering queries of the following form: Given a north-east
query quadrant Q, report the point of minimum weight in R ∩ Q. Using a two-dimensional range
tree and fractional cascading, we obtain the following result:

Lemma 1 The points of S can be stored in a data structure of size O(n log n) such that for any
north-east query quadrant Q, the closest pair in S ∩ Q can be reported in O(log n) time.

We also need a data structure for answering closest pair queries in a vertical query strip:

Lemma 2 ([19]) The points of S can be stored in a data structure of size O(n log2 n) such that
for any vertical query strip Q, the closest pair in S ∩ Q can be reported in O(log n) time.

The opposite-quadrant lemma: Let A be the set consisting of all points of S whose x- and
y-coordinates are less than zero, and let B be the set consisting of all points of S whose x- and
y-coordinates are larger than zero. Let A5 be the subset of A consisting of the min(5, |A|) points
that are L∞-closest to the origin, and let B5 be the subset of B consisting of the min(5, |B|) points
that are L∞-closest to the origin.

Lemma 3 Let (p, q) be the closest pair in S and let p ∈ A and q ∈ B. Then, p ∈ A5 and q ∈ B5.

We give a proof of this lemma, so that the reader may see the reason for the magic number “5”
used above.

Proof. Assume the claim is not true. Then we may assume w.l.o.g that p 6∈ A5. Observe that this
implies that A5 consists of five elements. Let δ be the largest L∞-distance between the origin and
any point in A5. Since p 6∈ A5, and p and q are in opposite quadrants, we have d(p, q) ≥ δ. The box
[−δ, 0]2 contains all points of A5. If we partition this box into four subboxes with sides of lenght δ/2,
then one of the subboxes contains two points a and a′ of A5. Since d(a, a′) ≤

√
2 ·δ/2 < δ ≤ d(p, q),

it follows that (p, q) is not a closest-pair in S. This is a contradiction.

Computing L∞-neighbors in a quadrant: Assume that the x- and y-coordinates of all points
of S are positive. We want to preprocess S such that queries of the following form can be answered:
Given a query point q with positive coordinates, let Qq be the south-west quadrant of q. Report
the min(5, |S ∩ Qq|) points in S ∩ Qq that are L∞-closest to the origin.

Let A be the set of all points of S that are on or below the diagonal y = x, and let B := S \A.
Then, for each point p in A (resp. B), the L∞-distance between p and the origin is equal to the
x-coordinate (resp. y-coordinate) of p. This observation leads to the following data structure, which
can be used to answer queries for the case when q is on or above the diagonal y = x: We maintain
(i) an array storing the points of A sorted by their x-coordinates, and (ii) an array storing the
points of B sorted by their x-coordinates; with each entry p in this array, we store the following
information: Let Bp := {b ∈ B : bx ≤ px}. We store with p the min(5, |Bp|) lowest points in Bp.

3

Lemma 4 Assume all points of S are in the positive quadrant. These points can be stored in a data
structure of size O(n) such that for any query point q with positive coordinates, the min(5, |S ∩Qq|)
points in S ∩ Qq that are L∞-closest to the origin, can be reported in O(log n) time.

Computing the closest pair in an anchored 3-sided rectangle: Let ℓ be a fixed vertical
line. An anchored 3-sided rectangle Q is an axes-parallel rectangle that is unbounded in the positive
y-direction and that is intersected by ℓ. Thus, such a rectangle can be written as Q = [a, b]× [c,∞),
where the x-coordinate of ℓ is between a and b. We consider queries of the following form: Given
an anchored 3-sided rectangle Q, report the closest pair in S ∩ Q.

Let T be a balanced binary search tree storing the points of S at its leaves, sorted by their
y-coordinates. Consider Q as above. Let u be the highest node on the right spine of T such that
the horizontal line ℓ′u that separates the left and right subtrees of u intersects Q. Let Xu be the
intersection point between ℓ and ℓ′u; this point partitions the plane into four quadrants. Let u1 and
u2 be the left and right children of u, respectively. Let Sl

u1
be the set of points of Su1

that are to
the left of the line ℓ, and let Sr

u1
be the set of points of Su1

that are to the right of ℓ. (Throughout,
we use the notation Sv, where v is a node in a binary search tree, to denote the subset of S stored
at the leaves of v’s subtree.) Define Sl

u2
and Sr

u2
similarly with respect to Su2

.
Consider the closest pair (p, q) in S ∩ Q. There are six possible cases. (1) If p and q are both

to the left of ℓ, then (p, q) is the closest pair of the subset of Sl
u1

∪ Sl
u2

which is in the north-east
quadrant of the point (a, c). Thus, we find (p, q) by storing at u the data structure of Lemma 1
storing the set Sl

u1
∪ Sl

u2
. (2) If p and q are both to the right of ℓ, then (p, q) is the closest pair of

the subset of Sr
u1

∪Sr
u2

which is in the north-west quadrant of the point (b, c). This is symmetric to
(1). (3) If p and q are both above the line ℓ′u, then (p, q) is the closest pair of the subset of Sl

u2
∪Sr

u2

which is in the strip bounded by the vertical lines through (a, c) and (b, c). Thus, we find (p, q) by
storing at u the structure of Lemma 2 storing the set Sl

u2
∪ Sr

u2
. (4) Assume p is in the south-west

quadrant of Xu and q is in the north-east quadrant of Xu. By storing at u appropriate variants of
the structure of Lemma 4, and using Lemma 3, we can compute 25 point-pairs, such that (p, q) is
among them. (5) The case when p is in the north-west quadrant of Xu and q is in the south-east
quadrant of Xu is symmetric to (4). (6) If p and q are both below the line ℓ′u, then both points are
in the subtree of u1. Thus, we can find (p, q) by recursively querying this subtree.

Thus, by storing at each node u of T the data structures of Lemmas 1, 2, and 4, for the
appropriate subsets of Su, we can answer closest pair queries for anchored 3-sided rectangles.

Lemma 5 The points of S can be stored in a data structure of size O(n log3 n) such that for any
anchored 3-sided query rectangle Q, the closest pair in S ∩ Q can be reported in O(log2 n) time.

Computing the closest pair in an anchored rectangle: Let ℓ be a fixed horizontal line. An
anchored rectangle Q is an axes-parallel rectangle that is intersected by ℓ. Such a rectangle can be
written as Q = [a, b] × [c, d], where the y-coordinate of ℓ is between c and d. We consider queries
of the following form: Given an anchored rectangle Q, report the closest pair in S ∩ Q.

Let T be a balanced binary search tree storing the points of S at its leaves, sorted by their x-
coordinates. Using T , we can reduce a closest pair query for an anchored rectangle Q to four queries
for anchored 3-sided rectangles and two closest pair queries for opposite quadrants. Depending on
Q, these queries can be performed for appropriate subsets of Su for any node u of T .

4

Lemma 6 The points of S can be stored in a data structure of size O(n log4 n) such that for any
anchored query rectangle Q, the closest pair in S ∩ Q can be reported in O(log2 n) time.

General closest pair rectangle queries: We now show how to answer general queries of the
form “given an axes-parallel rectangle Q, report the closest pair in S ∩ Q”.

Let T be a balanced binary search tree storing the points of S at its leaves, sorted by their
y-coordinates. For each internal node u of T , we define the horizontal line ℓ′u as before. Each
internal node u of T stores the data structure of Lemma 6. This structure stores the set Su and
supports queries of the form “report the closest pair in an anchored query rectangle”, for rectangles
that are anchored with respect to the line ℓ′u.

To answer a query with a given axes-parallel rectangle Q, we start at the root of T and follow
the path until the first node u is reached such that the horizontal line ℓ′u stored at u intersects Q.
Then we use the structure storing Su to find the closest pair in the query rectangle Q (which is
anchored with respect to ℓ′u). The correctness follows from the fact that S ∩ Q = Su ∩ Q.

Theorem 7 A set S of n points in the plane can be preprocessed into a data structure of size
O(n log5 n) such that for any axes-parallel query rectangle Q, the closest pair in S ∩ Q can be
reported in O(log2 n) time.

3 Closest pair rectangle queries on randomly distributed points

Let S be a set of n points in the plane, chosen independently and uniformly at random in the unit-
square. We obtain a data structure of expected size O(n log4 n) and query time O(log4 n) time.
Though not as efficient, asymptotically, as the one in [19], our solution is simple and practical, and,
moreover, extends naturally to any fixed dimension d > 2. (Also, for d = 2 our data structure can
be constructed more efficiently than the one in [19].)

Our approach is to precompute each point-pair (p, q), with p, q ∈ S, that is the closest pair
for at least one axes-parallel query rectangle. We then store each such pair as a weighted point
in a four-dimensional range tree. The four dimensions are, successively, the x- and y-coordinates
of p and the x- and y-coordinates of q. The weight is the Euclidean distance d(p, q). Given an
axes-parallel query rectangle Q, we can find the closest pair in S ∩ Q by doing a range-minimum
query [7] on the tree with the four-dimensional hyper-rectangle Q × Q.

Formally, let Q be the (infinite) set of all axes-parallel query rectangles. Let Λ be the number
of pairs (p, q), with p, q ∈ S and p to the left of q, such that there is a rectangle Q ∈ Q for which
(p, q) is a closest pair in S ∩ Q. Then our structure uses O(Λ log3 n) space and has a query time
of O(log4 n). Moreover, it can be built in time equal to that needed to compute the Λ pairs plus
O(Λ log3 n) time. Thus, if Λ is “small”, then this will be an efficient and practical solution.

Unfortunately, Λ can be Θ(n2) in the worst case: Consider two sets of n/2 points on the bound-
ary of the unit-circle, in opposite quadrants. Every pair of points, one from each set, contributes
one to Λ since it is the closest pair for the rectangle it defines. (See Figure 1.)

However, the situation is much better if the points of S are chosen independently and uniformly
at random in the unit-square, as it then turns out that the expected value of Λ is O(n log n).

Lemma 8 Let (p, q) be an ordered point-pair, with p, q ∈ S and p to the left of q. This pair
contributes a count of one to Λ if and only if the axes-parallel rectangle, R(p, q), that has pq as a
diagonal is empty, i.e., it contains no point of S \ {p, q}.

5

p

q
R(p, q)

Figure 1: An example point-set for which Λ = Θ(n2).

By Lemma 8, Λ equals the number of empty rectangles R(p, q), taken over all ordered point-
pairs (p, q), with p, q ∈ S and p to the left of q. If the points of S are chosen independently and
uniformly at random in the unit-square, then they are “well-distributed” and there will not be too
many empty rectangles R(p, q), as formalized by the following lemma. (This result is also stated,
without proof, by Felsner [6].)

Lemma 9 For a set S of n points that are chosen independently and uniformly at random in the
unit-square, the expected value, E(Λ), of Λ is O(n log n).

From the preceding discussion it follows that the closest pair in S ∩ Q can be computed in
O(log4 n) time using a structure of expected size O(n log4 n).

The above approach can be generalized to answer closest pair queries for axes-parallel query
hyper-rectangles in R

d also, for any fixed d ≥ 3. This is based on a result from [13] (see also [4])
that there are O(n logd−1 n/(d− 1)!) so-called direct domination pairs (p, q) among n points drawn
independently at random from the unit-hypercube in R

d. (Pair (p, q) is a direct domination pair if
p dominates q and there is no other point r such that p dominates r and r dominates q.) Each such
pair (p, q) defines the diagonal of an empty hyper-rectangle. Thus the expected number Λ of point-
pairs in R

d such that each is a closest pair for at least one query hyper-rectangle is O(n logd−1 n).
Our problem reduces now to storing each such pair (p, q) as a weighted point in a 2d-dimensional
range tree, where the 2d dimensions are, successively, the x1-, x2-, . . ., xd-coordinates of p and the
x1-, x2-, . . ., xd-coordinates of q, and the weight is the distance d(p, q). The expected space used is
O(E(Λ) log2d−1 n) = O(n log3d−2 n) and the query time is O(log2d n).

Theorem 10 Let S be a set of n points chosen independently and uniformly at random in the unit-
hypercube in R

d, d ≥ 2. S can be preprocessed into a structure of expected size O(n log3d−2 n) so
that for any axes-parallel query rectangle Q, the closest pair in S ∩Q can be reported in O(log2d n)
time.

4 Closest pair disk queries on randomly distributed points

The approach in Section 3 extends naturally to closest pair queries in random point-sets in the
plane when the query is a disk. Let D be the set of all disks. Let Sd be the set of all ordered
point-pairs (p, q), with p, q ∈ S and p to the left of q, such that there is a disk D ∈ D for which
(p, q) is the closest pair in S ∩D. We give each pair (p, q) in Sd a weight, which is equal to d(p, q).

Given a query disk D, finding the closest pair in S∩D is then equivalent to finding the point-pair
(p, q) in Sd of minimum weight for which both p and q are in D. Let Λ = |Sd|. By using halfspace

6

composition techniques (see [1]), we can solve this problem with a query time of O(Λ2/3+ǫ) using
O(Λ1+ǫ) space for any constant ǫ > 0.

We will show below that E(Λ) is O(n log n). It follows that there is a structure whose expected
query time is proportional to E(Λ2/3+ǫ) and whose expected size is E(Λ1+ǫ). Since Λ ≤ n2, we
have Λ1+ǫ ≤ Λn2ǫ and, thus, E(Λ1+ǫ) ≤ E(Λ)n2ǫ = O(n1+3ǫ).

Recall Jensen’s inequality [15] which states that for any convex function f , E(f(Λ)) ≥ f(E(Λ)).
The function f(x) = −x2/3+ǫ (for x > 0 and fixed ǫ with 0 < ǫ < 1/3) is convex. It follows that

E(Λ2/3+ǫ) ≤ (E(Λ))2/3+ǫ = O(n2/3+2ǫ). Thus, by replacing ǫ by ǫ/3, we obtain a structure whose
expected query time is O(n2/3+ǫ) and whose expected size is O(n1+ǫ).

We can show that E(Λ) = O(n log n) as follows. Let T be the set of all axes-parallel right-
triangles (i.e., the non-hypotenuse sides are parallel to the coordinate axes). Let St be the set of
all ordered pairs (p, q), with p, q ∈ S and p to the left of q, such that there is an axes-parallel right
triangle T ∈ T for which (p, q) is the closest pair in S ∩ T .

Lemma 11 Sd ⊆ St.

By Lemma 11, it suffices to show that E(|St|) is O(n log n). Let R(p, q) be the axes-parallel
rectangle with pq as a diagonal. Let T+ = T+(p, q) (resp. T− = T−(p, q)) be the subset of R(p, q)
lying on or above (resp. on or below) pq. Note that T+ and T− are both in T .

Lemma 12 (p, q), with p, q ∈ S and p to the left of q, is in St if and only if T+ or T− is empty.

An upper bound on E(|St|) now follows from the following lemma.

Lemma 13 For a set S of n points chosen independently and uniformly at random in the unit-
square, the expected number of point-pairs (p, q), where p, q ∈ S and p is to the left of q, and such
that T+(p, q) or T−(p, q) is empty, is O(n log n).

Combined with the earlier discussion we have:

Theorem 14 Let S be a set of n points chosen independently and uniformly at random in the
unit-square. For any constant ǫ > 0, there is a structure of expected size O(n1+ǫ) such that for any
query disk D, the closest pair in S ∩ D can be reported in O(n2/3+ǫ) expected time.

5 Computing the closest pair “partially inside” a query rectangle

Let S be a set of n points in the plane. We consider queries of the following form: Given a query
region Q ⊆ R

2, report the pair (p, q), where p ∈ S ∩ Q and q ∈ S \ Q, whose distance is minimum.
We will use the following property of the Euclidean Minimum Spanning Tree (EMST) of S [16].

Lemma 15 Let T be an EMST of S, let (Ŝ, S \ Ŝ) be any partition of S, and let L be the set of
shortest line-segments among all line-segments that have one endpoint in S and the other in S \ Ŝ.
Then, at least one line-segment of L is an edge of T .

By Lemma 15, it suffices to consider just the n − 1 point-pairs that define edges of the EMST
of S (rather than all

(

n
2

)

pairs in S). Specifically, if the boundary ∂Q of Q is a simple closed curve
(so that the “inside” and “outside” of Q are well-defined by the Jordan Curve Theorem), then pq

7

intersects ∂Q, where (p, q) is the desired closest pair. Thus, our problem becomes: Among all edges
of the EMST of S intersected by ∂Q and having exactly one endpoint in Q, find the shortest edge.

Suppose that Q is an axes-parallel rectangle [a, b] × [c, d]. Let e be an edge of the EMST of S
and let (ex, ey) and (e′x, e′y) be its endpoints, where (ex, ey) is to the left of (e′x, e′y).

Lemma 16 If ∂Q intersects e and Q contains exactly one endpoint of e, then at least one of the
following holds: (1) (ex, ey) ∈ Q and e′y > d, (2) (ex, ey) ∈ Q and e′y < c, (3) (ex, ey) ∈ Q and
e′x > b, (4) (e′x, e′y) ∈ Q and ey > d, (5) (e′x, e′y) ∈ Q and ey < c, (6) (e′x, e′y) ∈ Q and ex < a.

Our structure consists of four parts, D1, D2, D3, and D4: For each edge e of the EMST of S,
we create the point (ex, ey, e

′
y) in R

3, with weight equal to the length of e. Let S1 be the resulting
point-set. D1 is a 3-level range tree on S1, where the level-1 tree is built on the ex’s, the level-2
trees are built on the ey’s, and the level-3 trees are built on the e′y’s. Each node of each level-3
tree stores the minimum of the weights of the points in its subtree. Similarly, D2, D3, and D4 are
defined on the sets of weighted points (ex, ey, e

′
x), (e′x, e′y, ey), and (e′x, e′y, ex), respectively.

The query algorithm consists of the following six queries: D1 is queried first with the 3-
dimensional query rectangle Q × (d,∞) and then with Q × (−∞, c); this covers cases 1 and 2
of Lemma 16. D2 is queried with Q × (b,∞); case 3. D3 is queried first with Q × (d,∞) and then
with Q × (−∞, c); cases 4 and 5. D4 is queried with Q × (−∞, a); case 6. Each of these six query
returns a real number which is the length of the shortest edge of the EMST of S satisfying one of
the six conditions in Lemma 16. The smallest of these is the desired answer.

In more detail, the query on (say) D1 with Q × (d,∞) involves querying levels 1–3 of D1

successively with the intervals [a, b], [c, d], and (d,∞), which yields a grand total of O(log3 n)
canonical nodes in the level-3 subtrees. The union of the points contained in the subtrees of these
level-3 canonical nodes is exactly the set of points of S1 that are in Q × (d,∞). The minimum of
the weights stored at the O(log3 n) level-3 canonical nodes is then returned.

Clearly the space is O(n log2 n) and the query time is O(log3 n). The latter can be improved to
O(log2 n), via layering (see de Berg et al. [5]), since the third interval in the query is semi-infinite.

This can be generalized to axes-parallel query hyper-rectangles in R
d, d > 2. The analog of

Lemma 16 has 4d−2 conditions, each of which can be expressed as a range restriction in R
d+1 and,

hence, can be handled using a (d + 1)-dimensional range tree, with layering at the innermost level.

Theorem 17 Let S be a set of n points in R
d, where d ≥ 2 is a fixed constant. There is a

structure of size O(n logd n), such that for any d-dimensional axes-parallel query hyper-rectangle Q,
the closest pair (p, q), where p is in S ∩ Q and q is in S \ Q, can be reported in O(logd n) time.

Remark 1 This approach works for any query object Q for which a tree structure exists such that
S ∩ Q and S \ Q can each be grouped into a “small” number of canonical nodes. For each edge
e = (pe, qe) of the EMST, we store (say) pe, in such a tree structure, D, and at each node u of D we
store a pointer to a secondary structure of the same type as D; this structure stores all endpoints
qe for which the corresponding points pe are stored in the subtree of u. We query the resulting
structure first with Q and then the subtrees of the resulting canonical nodes with Q’s complement.

For instance, if Q is a halfplane, then a partition tree can be used for D; if Q is a disk, then
again a partition tree can be used (in R

3 since the query with Q becomes a halfspace query in R
3,

via the lifting map). This yields a solution using O(n1+ǫ) space, with a query time of O(n1/2+ǫ) in
the former case and O(n2/3+ǫ) in the latter case, where ǫ > 0 is a constant. This also generalizes
to higher dimensions, with the bounds shown in Table 1.

8

6 Computing the diameter in a query rectangle

Let S be a set of n points in the plane. Given an axes-parallel rectangle Q, we wish to report the
diameter of the set S ∩ Q.

We choose a parameter k, 1 ≤ k ≤ n, and build the following 3-part structure: (1) A range
tree storing the points of S. The primary tree of stores the points at its leaves, sorted by their
x-coordinates. Every node u in this primary tree stores a pointer to a secondary tree which stores
the points of Su at its leaves, sorted by their y-coordinates. (2) Each node v in each secondary tree
in the range tree stores (i) the diameter of the set Sv and (ii) the furthest-point Voronoi diagram
of the set Sv. Each furthest-point Voronoi diagram is preprocessed for point location queries; see
Kirkpatrick [12]. (3) Let B be the set of all nodes v such that v is a node in some secondary tree
and |Sv| ≥ k. A table T is stored, giving for each pair v,w of distinct vertices in B, the maximum
distance between any point in Sv and any point in Sw.

The space to store the range tree and the furthest-point Voronoi diagrams is O(n log2 n). Since
B has size O((n/k) log n), the structure has size O

(

n log2 n + |B|2
)

= O
((

n + (n/k)2
)

log2 n
)

.
The query algorithm consists of the following steps: (a) Compute a set C of O(log2 n) canonical

nodes v in the secondary structures of the range tree such that S ∩ Q = ∪v∈CSv. (b) Each node
v of C stores the diameter of the set Sv; compute the maximum of these diameters. (c) For each
pair v,w of distinct nodes in C, do the following. If both Sv and Sw have size at least k, then
the table T stores the largest distance between any point in Sv and any point in Sw. Otherwise,
assume w.l.o.g that |Sv| < k. Then, for each point p in Sv, perform a point location query in the
furthest-point Voronoi diagram of Sw and, thus, obtain the largest distance between any point in
Sv and any point in Sw. (d) Return the largest distance thus found.

Theorem 18 Let S be a set of n points in the plane and let k be an integer with 1 ≤ k ≤ n. The set
S can be preprocessed into a structure of size O((n + (n/k)2) log2 n) such that for any axes-parallel
query rectangle Q, the diameter of S ∩ Q can be reported in O(k log5 n) time.

7 Approximating the diameter in a query rectangle

Let S be a set of n points in the plane and let δ be a real, 0 < δ < 1. Given an axes-parallel
rectangle Q, we wish to report a pair of points in S ∩Q whose distance is at least (1− δ) times the
diameter of S ∩ Q.

We first consider the case where δ is fixed. Let β(δ) =
⌈

2 arcsin(1−δ)
π−2 arcsin(1−δ)

⌉

. It can be shown that

β(δ) = O(1/
√

δ) if δ converges to zero. The following lemma is adapted from Janardan [11].

Lemma 19 Choose 2(β(δ)+1) equally-spaced vectors around the unit-circle. For each such vector
di, let pi be the point of S that is extreme in direction di, and let qi be the point of S that is extreme
in direction −di. Let D be the diameter of S and let ∆ = maxi d(pi, qi). Then 1 − δ ≤ ∆/D ≤ 1.

Our structure is a range tree. With each node v in each secondary tree, we store the O(β(δ)) =
O(1/

√
δ) point-pairs of Lemma 19 for Sv. The space used is O((1/

√
δ)n log n).

Given Q, we compute a set C of O(log2 n) canonical nodes v in the secondary structures of the
range tree such that S ∩Q = ∪v∈CSv. Consider any of the O(β(δ)) direction pairs di and −di. We
compute the extreme points of S ∩ Q in directions di and −di by computing the extreme points

9

among those stored with the canonical nodes for this direction pair. By Lemma 19, the farthest
pair so computed over all direction pairs is an approximation to the diameter of S ∩ Q.

Theorem 20 Let S be a set of n points in the plane and let δ be a fixed real, 0 < δ < 1. S can be
preprocessed into a structure of size O((1/

√
δ)n log n) so that for any axes-parallel query rectangle

Q, a (1 − δ)-approximation to the diameter of S ∩ Q can be reported in O((1/
√

δ) log2 n) time.

The above structure depends on δ. We now give a structure that is independent of δ and can
answer queries where δ comes as an input parameter along with the query rectangle Q.

We again use a range tree for the points of S. Now, every secondary node v stores the convex
hull of the point set Sv. The size of this structure is O(n log2 n).

Given Q, we find a set C of O(log2 n) canonical nodes. By merging the O(log2 n) convex hulls
of the sets Sv, with v ∈ C, we obtain the convex hull of the set S ∩Q. We use this hull to compute
the O(1/δ) extremal pairs of S ∩ Q. We can, in logarithmic time, compute (i) the convex hull of
two convex polygons and (ii) the extreme point of a convex polygon for a given direction; see [16].
It follows that the query time is O(log3 n + (1/

√
δ) log n).

Theorem 21 Let S be a set of n points in the plane. S can be preprocessed into a structure of size
O(n log2 n) such that for any axes-parallel query rectangle Q and any real number δ, 0 < δ < 1, that
is specified as part of the query, a (1 − δ)-approximation to the diameter of S ∩ Q can be reported
in O(log3 n + (1/

√
δ) log n) time.

8 Approximating the width in a query rectangle

Recall that the width of a point-set is the width of a narrowest strip that encloses the point-set.
Let S be a set of n points in the plane and let δ be a real number, 0 < δ < 1. Given an axes-parallel
query rectangle Q, we wish to report a strip enclosing the points in S ∩ Q whose width is at most
1 + δ times the width of S ∩ Q.

Let δ be fixed. Define γ(δ) =
⌈

π
2 arccos(1/(1+δ))

⌉

. It can be shown that γ(δ) = O(1/
√

δ) if δ

converges to zero. Our approach is based on the following lemma, adapted from Janardan [11].

Lemma 22 Let S0 = S and for 1 ≤ i ≤ γ(δ), let Si be a copy of S that is rotated clockwise around
the origin from Si−1 by an angle of π/γ(δ). For 0 ≤ i ≤ γ(δ), let Li be the downward convex
chain that is dual to the upper hull of the convex hull of Si, and let Ri be the upward convex chain
that is dual to the lower hull of the convex hull of Si. (Li is strictly above Ri.) Let ωL

i be the
minimum distance between any vertex of Li and any point vertically below it on Ri, and let ωR

i

be the minimum distance between any vertex of Ri and any point vertically above it on Li. Let
Ω = mini{ωL

i , ωR
i } and let W be the width of S. Then 1 ≤ Ω/W ≤ 1 + δ.

As discussed in [11], the distances ωL
i and ωR

i can be computed in O(log2 n) time, via binary
search, if the chains Li and Ri are stored in balanced binary search trees.

Our structure is a range tree for S. Each node v in each secondary tree stores 1+γ(δ) instances
of the data structure underlying Lemma 22 for the set Sv; specifically, the i-th instance is a pair
of balanced binary search trees built on the dual chains Li(v) and Ri(v) associated with the i-th
rotated copy of Sv. The space used is O((1/

√
δ)n log2 n).

10

Given the query Q, we compute, in O(log2 n) time, a set C of O(log2 n) canonical nodes v in
the secondary structures of the range tree such that S ∩ Q = ∪v∈CSv. Then, for each i, taken in
turn, we merge the Li(v)’s for all v ∈ C into a single chain. Similarly, for the Ri(v)’s. This takes
O((1/

√
δ) log3 n) time. From the resulting O(1/

√
δ) pairs of chains, we compute the minimum

vertical distance between each pair and obtain the smallest of these distances as Ω.

Theorem 23 Let S be a set of n points in the plane and let δ be a real number, 0 < δ < 1. S can
be preprocessed into a data structure of size O((1/

√
δ)n log2 n) such that for any axes-parallel query

rectangle Q, a (1+δ)-approximation to the width of S∩Q can be reported in O((1/
√

δ) log3 n) time.

References

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E.
Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, volume
223 of Contemporary Mathematics, pages 1–56. American Mathematical Society, Providence,
RI, 1999.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. J. ACM, 51:606–635, 2004.

[3] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Approximate range mode and range median
queries. In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer Science,
volume 3404 of Lecture Notes in Computer Science, pages 377–388, Berlin, 2005. Springer-
Verlag.

[4] D. Datta and S. Soundaralakshmi. An efficient algorithm for computing the maximum empty
rectangle in three dimensions. Information Sciences, 128:43–65, 2000.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 2nd edition, 2000.

[6] S. Felsner. Empty rectangles and graph dimension. arXiv:math/0601767v1, 2006.
http://arxiv.org/abs/math/0601767v1.

[7] H. Gabow, J.Bentley, and R. Tarjan. Scaling and related techniques for geometry problems.
In Proceedings of the 16th ACM Symposium on Theory of Computing, pages 135–142, 1984.

[8] S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-tree: An efficient indexing scheme for range
aggregate queries. In Proceedings of the 9th International Conference on Database Theory,
pages 143–157, 2003.

[9] P. Gupta. Algorithms for range-aggregate query problems involving geometric aggregation
operations. In Proceedings of the 16th Annual International Symposium on Algorithms and
Computation, volume 3827 of Lecture Notes in Computer Science, pages 892–901, Berlin, 2005.
Springer-Verlag.

[10] S. Hong, B. Song, and S. Lee. Efficient execution of range-aggregate queries in data warehouse
environments. In Proceedings of the 20th International Conference on Conceptual Modeling,
volume 2224 of Lecture Notes in Computer Science, pages 299–310, Berlin, 2001. Springer-
Verlag.

11

[11] R. Janardan. On maintaining the width and diameter of a planar point-set online. International
Journal of Computational Geometry & Applications, 3:331–344, 1993.

[12] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12:28–35, 1983.

[13] R. Klein. Direct dominance of points. International Journal of Computer Mathematics, 19:225–
244, 1987.

[14] D. Krizanc, P. Morin, and M. Smid. Range mode and range median queries on lists and trees.
Nordic Journal of Computing, 12:1–17, 2005.

[15] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press,
Cambridge, UK, 2005.

[16] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, Berlin, 1988.

[17] J. Shan, D. Zhang, and B. Salzberg. On spatial-range closest-pair query. In Proceedings of
the 8th International Symposium on Spatial and Temporal Databases, volume 2750 of Lecture
Notes in Computer Science, pages 252–269, Berlin, 2003. Springer-Verlag.

[18] R. Sharathkumar and P. Gupta. Range-aggregate proximity detection for design rule checking
in VLSI layouts. In Proceedings of the 18th Canadian Conference on Computational Geometry,
pages 151–154, 2006.

[19] R. Sharathkumar and P. Gupta. Range-aggregate proximity queries. Technical Re-
port IIIT/TR/2007/80, International Institute of Information Technology Hyderabad,
http://www.iiit.net/techreports/2007 80.pdf, 2007.

[20] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2002.

[21] T. G. Szymanski and C. J. van Wyk. Layout analysis and verification. In B. Preas and
M. Lorenzetti, editors, Physical Design Automation of VLSI Systems, pages 347–407. Ben-
jamin/Cummins, 1988.

[22] Y. Tao and D. Papadias. Range aggregate processing in spatial databases. IEEE Transactions
on Knowledge and Data Engineering, 16:1555–1570, 2004.

[23] D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos, and B. Seeger. Efficient computation of
temporal aggregates with range predicates. In Proceedings of the 20th Symposium on Principles
of Database Systems, pages 237–245, 2001.

[24] D. Zhang and V. J. Tsotras. Improving min/max aggregation over spatial objects. VLDB
Journal, 14:170–181, 2005.

[25] D. Zhang, V. J. Tsotras, and D. Gunopulos. Efficient aggregation over objects with extent. In
Proceedings of the 21st Symposium on Principles of Database Systems, pages 121–132, 2002.

12

