
CCCG 2008, Montréal, Québec, August 13–15, 2008

Data Structures for Restricted Triangular Range Searching

Nadia M. Benbernou∗ Mashhood Ishaque† Diane L. Souvaine‡

Abstract

We present data structures for triangular emptiness
and reporting queries for a planar point set, where the
query triangle contains the origin. The data structures
use near-linear space and achieve polylogarithmic query
times.

1 Introduction

Simplex range searching (emptiness, reporting, count-
ing) [1] is a fundamental problem in computational ge-
ometry. Given a set S of n points, a simplex emptiness
query asks whether a given query simplex contains a
non-empty subset of S. A simplex reporting query asks
for a report of all points of S inside the query simplex,
and a simplex counting query asks for the total number
of such points.

In this paper we consider the restricted version of
simplex (triangular) emptiness and reporting queries for
points in a plane, where each query triangle contains the
origin. Since we can triangulate any triangle containing
origin into three triangles such that each triangle has
one vertex incident on origin, we can assume wlog that
each query triangle has one vertex at origin. The same
idea works for any convex polygon containing the origin,
but the number of query triangles is equal to the number
of sides in the polygon.

1.1 Our Results

We present near-linear-space data structures for the fol-
lowing queries. All reporting queries incur an additional
cost of O(k) where k is the number of objects to be re-
ported.

• Restricted triangular emptiness and reporting
queries in O(lg2 n) time. [Section 2]

• Restricted triangular emptiness and reporting
queries in O(21/ǫ lg n) time. [Section 3]

• Restricted triangular emptiness queries in O(lg n)
time. [Section 4]

• Triangular emptiness and reporting queries in
O(polylog n) time with high probability, where the

∗Massachusetts Institute of Technology, nbenbern@mit.edu.

Partially supported by AFOSR grant FA9550-07-1-0538.
†Tufts University, mishaq01@cs.tuft.edu. Partially supported

by NSF grant CCF-0431027.
‡Tufts University, dls@cs.tuft.edu. Partially supported by

NSF grant CCF-0431027.

vertices of the query triangle are randomly chosen
from the given point set. [Section 5]

• Ray intersection detection and reporting queries
among an arrangement of n lines in O(polylog n)
time. [Section 6]

• Non-orthogonal square emptiness and reporting
queries in O(polylog n) time. [Section 7]

Query Triangle

Origin

Figure 1: Restricted Triangular Range Queries

1.2 Related Results

Chazelle [5] showed that in the arithmetic model
Ω(n1/2) time is needed to answer a triangular count-
ing query using linear space. Similarly Brönnimann et

al. [4] gave a lower bound of Ω(n1/3) for halfplane range
counting in semigroup arithmetic model. For triangu-
lar reporting queries, Chazelle and Rosenberg [9] showed
that, on a pointer machine, a query time of O(nδ+k) re-
quires Ω(n2(1−δ)−ǫ) space. Consequently polylogarith-
mic query time requires close to quadratic space. Al-
though halfplane range counting is as hard as triangular
range counting, halfplane reporting is significantly eas-
ier than triangular reporting. Chazelle et al. [6] gave a
linear-space data structure for halfplane range reporting
that achieves O(lg n+k) query time. The data structure
maintains nested (peeling) convex layers for the given
point set. Similarly for halfplane emptiness queries, a
linear-space data structure that maintains convex hull
of the given point set allows the queries to be answered
in O(lg n) time.

The best known data structure for triangular empti-
ness (reporting) that uses O(n lg n) space, achieves a
query time of O(n1/2+ǫ) (additional O(k) for reporting).
The data structure is based on Matoušek’s technique of
simplicial partitioning with low crossing number [15].

Using near quadratic space it is possible to sup-
port triangular range searching in polylogarithmic time.



20th Canadian Conference on Computational Geometry, 2008

Chazelle et al. [10] gave a O(n2+ǫ) space data struc-
ture that supports reporting queries in O(lg n+k) time.
Goswami et al. [14] presented a O(n2) space data struc-
ture that can support triangular reporting queries in
O(lg2 n + k) and triangular counting (and hence empti-
ness) queries in O(lg n) time.

Bounding Box

h

Figure 2: Halfplane Queries to Triangular Queries

The best lower bounds known for the triangular
emptiness queries comes from the lower bounds for half-
plane emptiness queries. There is a simple reduction
from halfplane range queries to triangular range queries
(see Figure 2). Erickson [13] showed that for any data
structure supporting halfplane emptiness queries will
have a lower bound of Ω(lg n) for query, Ω(n) for space,
and Ω(n lg n) for preprocessing. While the bounds for
halfplane emptiness are tight, there is no matching up-
per bound for triangular emptiness queries.

2 Simple Data Structures with O(lg2 n) Query

Given a set of n points in the plane, sort the points ro-
tationally in counter-clockwise order around the origin.
Assign as ID to each point its order in the sorted list of
points. Now consider any single wedge formed by two
rays emanating from the origin. Let i be the first and
j be the last point inside the wedge that would be hit
if we were to sweep rotationally around origin using a
ray that goes from the right boundary of the wedge to
the left boundary. Observe that all the points inside the
wedge are consecutive (with wrap-around) in the sorted
order, see Figure 3. For any given wedge, we can find
the points i and j in O(lg n) time. For any triangular
emptiness/reporting query ∆abc with a vertex, b, coinci-
dent with the origin, we can extend the two sides as rays
−→
ba and

−→
bc away from the origin to form a wedge. Now if

we had a halfplane emptiness/reporting data structure
over the points in this wedge, we could answer trian-
gular emptiness and reporting queries by querying the
halfplane bounded by ←→ac .

A näıve data structure for restricted triangular empti-
ness queries would be to store a convex hull for each
pair of indicies (i, j), supporting queries in O(lg n) time,
and using O(n3) space. The preprocessing time would
be O(n3) because we can compute the convex hull in
linear time for points in sorted order. For triangular
reporting we would store nested convex layers instead
of convex hulls. The query time would be O(lg n + k),

space would be O(n3), and the preprocessing would be
O(n3 lg n).

12

3
4

5

6

7 8

9
b

a
c

Figure 3: Points Sorted Around the Origin

Since the halfplane emptiness and reporting queries
are decomposable, we could build a simpler data struc-
ture. Given the set of points in sorted order, build
the dynamic convex hull structure of Overmars and van
Leeuwen [16]. The data structure needs O(n) space,
O(n lg n) preprocessing and the query takes O(lg2 n).
To answer an emptiness query, the leaves in the dy-
namic convex hull tree corresponding to two extreme
points inside the wedge are located. Then by climbing
up the tree from the two leaves until the least common
ancestor is reached, up to O(lg n) convex hull structures
are collected. Together these convex hull cover all the
points between and including the two extreme points.
The query is answered by querying each of these O(lg n)
structures for halfplane emptiness. For restricted tri-
angular reporting, a convex peeling layers structure is
stored at each node. The data structure needs O(n lg n)
space , O(n lg2 n) preprocessing and support queries in
O(lg2 n + k) time. Daescu et al. [11] used a similar idea
to build a data structure for halfplane farthest-point
queries.

3 Data Structures with O(21/ǫ lg n) Query

In this section we present an near-linear-space data
structure for restricted triangular emptiness/reporting
queries that achieves logarithmic query time. We start
with the näıve data structures from previous section
that use O(n3) space and achieves O(lg n) query time.
Then we recursively apply the space-reducing transfor-
mation from Aronov et al. [2] to provide a O(n1+ǫ)
space data structure. The space-reducing transforma-
tions preserve the O(lg n) query time, but the constant
is exponential in 1/ǫ.

Here is how the transformation works. Given the
set of n points sorted around the origin, select every
mth point to be a breakpoint. For each breakpoint
mi, compute the convex hull (convex layers for report-
ing) for each sequence of points starting at mi whose
length is a power of two. This constitutes linear space
for each of the breakpoints. In addition, we compute
this data structure recursively for each half-open inter-
val [mi,mi+1) formed by the breakpoints mi and mi+1.
Let M(n) be the size of the data structure on n points.



CCCG 2008, Montréal, Québec, August 13–15, 2008

The recurrence relation (same as in [2]) for the space of
the data structure after one space-reducing transforma-
tion: M(n) = (n/m + 1)M(m) + O(n2/m)

Applying (1/2 + 1/ǫ) transformations for any given
ǫ > 0, as in [2], yields the desired space and prepro-
cessing of O(n1+ǫ). Although the published proof for
the recurrence relation is incorrect, there is an easy fix
(omitted) suggested by Erik Demaine [12]–an author of
that paper.

To answer a triangular emptiness (reporting) query,
identify in O(lg n) time the extreme points i and j in-
side the wedge; let mi and mj be the breakpoints inside
the wedge, closest to points i and j respectively; open
intervals (i,mi) and (mj , j) do not contain any break-
point, thus we must have a recursive data structure for
them; two convex hull (convex layers) structures will
cover all the points in the interval [mi,mj ]. For a re-
porting query we may report some points twice. The
recurrence relation for query time is given as follows,
with a solution of O(21/ǫ lg n) (as in [2]):

Q(n) = 2Q(m) + O(lg n)

4 Emptiness Queries in O(lg n) Time

We apply the fractional cascading technique [7] to the
O(lg2 n) time emptiness query data structure given in
Section 2. The modified data structure supports empti-
ness queries in O(lg n) time, but the space becomes
O(n lg n).

The basic idea is to reduce a halfplane emptiness
query to the problem of finding the extreme point in
a given direction. A query halfplane is empty if and
only if the extreme (farthest) point in the direction per-
pendicular to the query line (defining the halfplane) is
not contained in the halfplane. With each extreme point
we can associate a half-open interval of slopes. We can
store a sorted array of these intervals and for a given
slope find the extreme point in O(lg n) time using binary
search. We store one such sorted array (corresponding
to extreme points in a node’s subtree) at each node in
the data structure. Notice to answer a restricted trian-
gular emptiness query we still need to perform O(lg n)
extreme point queries, but we can apply fractional cas-
cading here. So only the first extreme point query takes
O(lg n) time, and the queries after that can be answered
in constant time.

Achieving O(lg n + k) time for reporting queries re-
mains a key open problem, as Chazelle and Liu [8]
showed that the fractional cascading technique does not
generalize to planar maps.

5 A Probabilistic Data Structure

For a given set of n points, there are
(

n
3

)

triangles with
vertices in the point set. For a query triangle chosen ran-
domly out of these

(

n
3

)

triangles, there exist near-linear-
space data structures that support triangular emptiness

and reporting queries in O(lg n) time with probability
(1−1/n). Even in case of failure the data structures do
not answer queries incorrectly; instead they identify in
O(lg n) time whether the given query can be answered.
Although it might seem that the same result could be
achieved using ǫ-nets, the obvious strategies for doing
so fail.

The key idea is to use the result by Aronov et al. [3]
which says that for a subset of these

(

n
3

)

triangles of size
at least n2, there exists a point that is inside a fraction
of the triangles in the subset. Thus starting from the
set of all

(

n
3

)

triangles, we find the deepest point. Using
this point as origin we build restricted triangular query
data structures over the given point set. We then re-
move the triangles containing this deepest point, from
the set of triangles. We repeat the method on the re-
maining subset until there are only O(n2) triangles left.
Since we discard a fraction of triangles in every step, we
build O(lg n) restricted triangular query data structures
which together can handle (n3−n2) triangles. For a tri-
angular query we can find in O(lg n) time if there is some
data structure whose origin is contained in the query
triangle. If there exists such a data structure, we use
it to answer the triangular emptiness/reporting query;
otherwise we indicate failure or perform a linear-time
exhaustive search that would result in O(lg n) expected
time.

6 Ray Intersection Detection and Reporting

In the data structures for restricted triangular range
queries if the points are sorted by their x-coordinate in-
stead of radially sorted, the data structures can support
axis-parallel three-sided trapezoidal queries. Using two
such trapezoidal queries, we can answer double-wedge
emptiness and reporting queries where one of the lines
forming the wedge is vertical (see Figure 4).

Figure 4: Trapezoidal Range Queries

Since such a double-wedge corresponds to a ray in
the dual world, the data structures can be used to an-
swer ray intersection detection and reporting queries
among an arrangement of n lines. The data structure
for detecting intersection uses O(n lg n) space and sup-
port queries in O(lg n) time. For intersection reporting
the query time is O(lg2 n + k) using O(n lg n) space, or
O(lg n + k) using O(n1+ǫ) space.



20th Canadian Conference on Computational Geometry, 2008

7 Non-Orthogonal Square Range Searching

By building a range tree of three-sided trapezoidal
query data structures, we could support right-triangular
queries, where the base of the triangle is axis-parallel.
The space for the data structure increases and the query
time slows down by a factor of O(lg n).

Since a non-orthogonal square can be partitioned into
eight axis-parallel right triangles, the data structures for
axis-parallel right triangles also support non-orthogonal
square (or rectangles with constant aspect ratio–fat
rectangles) emptiness and reporting queries .

A brief sketch of the proof: from the highest vertex of
the given square draw a vertical line segment down to
one of the non-adjacent sides. Similarly from the lowest
vertex draw a vertical line segment upwards. Let x be
the side-length then each vertical segment has a length
in the interval [x,

√
2x]. The two diagonals of the square

intersect at a distance 1√
2
x from each vertex. There-

fore, the downward vertical segment goes below and the
upward vertical segments goes above this point of inter-
section. Thus we can draw horizontal segment from the
lower (upper) endpoint of the downward (upward) ver-
tical segment to the other vertical segment. Notice the
argument does not hold for long skinny non-orthogonal
rectangles.

Figure 5: Non-Orthogonal Square Range Queries

8 Concluding Remarks

It is impossible to achieve O(polylog n) time for trian-
gular counting queries using O(n polylog n) space, even
when the query triangle contains the origin; since a half-
plane counting query can be reduced in constant time to
a restricted triangular counting query. Thus the lower
bound for halfplane range counting queries [4] applies
to restricted triangular range counting as well.

The fact that the data structures for restricted tri-
angular queries support both emptiness and reporting
queries in O(polylog n) time indicates that the tech-
niques for restricted case will not extend to general
triangular emptiness. The lower bound on triangular
reporting queries [9] on a pointer machine, indicates
that any near-linear-space data structure achieving
O(polylog n) time for triangular emptiness must handle
emptiness queries differently from reporting queries.

Acknowledgment

This paper has benefited from the suggestions of anony-
mous referees.

References

[1] P. Agarwal and J. Erickson. Geometric range searching
and its relatives. In B. Chazelle, J.E. Goodman, and
R. Pollack, editors, Adv. in Disc. and Comp. Geome-

try, volume 23, pages 1–56. AMS Press, Providence, RI,
USA, 1999.

[2] Boris Aronov, Prosenjit Bose, Erik D. Demaine,
Joachim Gudmundsson, John Iacono, Stefan Langer-
man, and Michiel H. M. Smid. Data structures for half-
plane proximity queries and incremental voronoi dia-
grams. In LATIN, pages 80–92, 2006.

[3] Boris Aronov, Bernard Chazelle, Herbert Edelsbrunner,
Leonidas J. Guibas, Micha Sharir, and Rephael Wenger.
Points and triangles in the plane and halving planes in
space. Discrete Comput. Geom., 6(5):435–442, 1991.

[4] Hervé Brönnimann, Bernard Chazelle, and János Pach.
How hard is half-space range searching? Discrete &

Computational Geometry, 10:143–155, 1993.

[5] Bernard Chazelle. Lower bounds on the complexity of
polytope range searching. JAMS, 2:637–666, 1989.

[6] Bernard Chazelle, Leo J. Guibas, and D. T. Lee. The
power of geometric duality. BIT, 25(1):76–90, 1985.

[7] Bernard Chazelle and Leonidas J. Guibas. Fractional
cascading: I. a data structuring technique. Algorith-

mica, 1(2):133–162, 1986.

[8] Bernard Chazelle and Ding Liu. Lower bounds for in-
tersection searching and fractional cascading in higher
dimension. J. Comput. Syst. Sci., 68(2):269–284, 2004.

[9] Bernard Chazelle and Burton Rosenberg. Simplex
range reporting on a pointer machine. Comput. Geom.

Theory Appl., 5(5):237–247, 1996.

[10] Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-
optimal upper bounds for simplex range searching and
new zone theorems. Algorithmica, 8:407–429, 1992.

[11] Ovidiu Daescu, Ningfang Mi, Chan-Su Shin, and
Alexander Wolff. Farthest-point queries with geometric
and combinatorial constraints. Comput. Geom. Theory

Appl., 33(3):174–185, 2006.

[12] Erik D. Demaine. Personal communication, 2007.

[13] Jeff Erickson. Space-time tradeoffs for emptiness
queries. SIAM J. Comput., 29(6):1968–1996, 2000.

[14] Partha P. Goswami, Sandip Das, and Subhas C. Nandy.
Simplex range searching and k nearest neighbors of a
line segment in 2d. In SWAT, pages 69–79, London,
UK, 2002. Springer-Verlag.

[15] Jiŕı Matousek. Geometric range searching. ACM Com-

put. Surv., 26(4):421–461, 1994.

[16] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane. J. Comput. Syst. Sci.,
23:166–204, 1981.


