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A generalization of Apollonian packing of circles

Gerhard Guettler*

Abstract

Three circles touching one another at distinct points
form two curvilinear triangles. Into one of these we
can pack three new circles, touching each other, with
each new circle touching two of the original circles. In
such a sextuple of circles there are three pairs of cir-
cles, with each of the circles in a pair touching all four
circles in the other two pairs. Repeating the construc-
tion in each curvilinear triangle that is formed results
in a generalized Apollonian packing. We can invert the
whole packing in every circle in it, getting a “general-
ized Apollonian super-packing”. Many of the properties
of the Descartes configuration and the standard Apol-
lonian packing carry over to this case. In particular,
there is an equation of degree 2 connecting the bends
(curvatures) of a sextuple; all the bends can be integers;
and if they are, the packing can be placed in the plane
so that for each circle with bend b and center (z,y), the
quantities bz /v/2 and by are integers.

Recently there has been renewed interest in a very
old idea, that of Apollonian packing of circles, in which
an initial configuration of three mutually tangent circles
is augmented by repeatedly drawing new circles in each
curvilinear gap. See for example Mumford et al [8]. We
can also study “super-Apollonian” packings which are
obtained by repeatedly inverting an Apollonian packing
in every circle in it. It is a remarkable fact that Apol-
lonian and super-Apollonian packings exist in which all
the bends (curvatures) are integers. This property was
studied in detail by Graham et al [3], and the group the-
ory associated with these packings has been studied by
the same authors [4-6]. Also, if all the bends are inte-
gers, the super-Apollonian packing can be placed in the
plane so that all the “bend times center” quantities are
integers. Several extensions of the Apollonian idea have
been studied, for example Mauldon [7] studied configu-
rations in which adjacent circles do not touch but have
constant “separation”.

Our own interest lies in extending these ideas in new
directions, particularly by packing not one but three
circles within each triangular gap, thus forming sextu-
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ples of circles, and in exploring the degree to which the
theory associated with the classical packings can be ex-
tended to cover this case. We find that all the bends
in such a generalized packing can be integers; and there
are results relating to the positions of the centers of the
circles that directly generalize those found by Lagarias
et al [2] in the classical Descartes-Apollonian case.
Figure 1 shows the four possible configurations of a
sextuple. There can be zero, one, or two circles wth
bend zero (i.e. straight lines), and at most one bend

can be negative, as in case (a).
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Figure 1: Sextuple configurations

These configurations generalize the classical
Descartes configuration, in which just one circle is
placed in a curvilinear triangle. Such a sextuple of
circles forms an n = 4 example of what we call a
“ball-bearing” configuration, in which a ring of n
circles (each touching two others) have the property
that there are “inner” and “outer” circles that each
touch all n circles in the ring. The n=3 case reproduces
the classical Descartes configuration. With n = 4 the
circles come in three pairs, with each of the circles in
a pair touching all four circles in the other two pairs.
The circles of a pair do not touch one another. The
sextuple thus has the symmetry of the vertices of an
octahedron (or of the faces of a cube), rather than the
symmetry of a tetrahedron as in the Descartes case.



20th Canadian Conference on Computational Geometry, 2008

Repeating the construction in each curvilinear triangle
that is formed results in a “generalized Apollonian
packing”. See Figures 2 (based on Figure 1(a)) and
3 (based on Figure 1(c)). Here, and in subsequent
figures, we include only circles with bend less than 100.

Figure 3: Another generalized Apollonian packing

Many of the properties of the Descartes configuration
and the standard Apollonian packing carry over to this
case. In particular:

(i) Given a ring of four circles, formed by two pairs of
circles in a sextuple, there is a quadratic equation whose
coefficients involve the bends of these four circles, the
roots of which are the bends of the other pair of circles
in the set. Explicitly,

2:[72—560'4-7'—%0'2:0 (1)
where o = by + b +by +b, 7 = by 2+, +by> 4+ b,® This
generalizes the classical Descartes equation. Replacing
each bend by the corresponding bend*(complex) cen-
ter gives another result which generalizes the “Complex
Descartes Theorem” of [2].

(ii) There is an analog of “Descartes reflection” (see
[2]) in which three circles (one from each pair in a sex-
tuple, these three circles occupying a curvilinear trian-
gle formed by the other three circles of the sextuple)

are replaced by three circles occupying the other trian-
gle formed by these three circles, thus forming another
sextuple. Given a sextuple, this operation can be per-
formed in eight different ways. Iteration of this opera-
tion creates a generalized Apollonian packing in which
the interiors of all circles are disjoint. A packing is de-
termined by any three touching circles within it.

(iii) all six bends of the circles in a sextuple can be
integers. Examples: in Figure 1(c), the bends are (0,2;
0,2; 1,1); in Figure 1(a) they are (-1,7; 2,4; 2,4). This
property is inherited by all derived circles.

(iv) if all bends of a sextuple are integers, the sextuple
can be placed in the plane so that for each circle with
bend b and center (z,y), the “bend times center” quan-
tities (bx,by) have both bxr/v/2 and by integers. This
property is inherited by the generalized packing based
on this sextuple.

(v) The construction of the generalized packing can
be realised by integral linear operations acting on ma-
trices representing the sextuples. These matrices could
be 6 x 4 matrices with each row containing the “abbc”
or “augmented bend, bend times center” coordinates
introduced in [2]. The abbc coordinates of a circle C
with bend ( = 1/radius) b and center (z,y) is the vec-
tor a(C) = (b, b, bz, by) where b is the bend of the circle
that is the inverse of C' in the unit circle, namely

b=0b(=*+y*) —1/b (2)

However it is convenient to represent a sextuple by a 4 x
4 matrix that we call F(C) in which the first three rows
contain the abbc coordinates of three of the circles in
the sextuple (one from each pair) and the fourth row is
the average of two rows that represent a pair of circles
in the sextuple (this average is the same for each of the
three pairs). This row does not represent a circle.

(vi) There are dual operations acting on the right,
which represent Mobius transformations.

(vii) Among the sextuples with integer bends, there
are “root” sextuples (see [3] and [5]) having the prop-
erty that any application of the reflection operation in
(ii) results in circles with larger bends. These root sex-
tuples can be found by applying a reduction algorithm,
just as in the Descartes case. Except for the special
sextuple with bends (0,2; 0,2; 1,1) (Figure 1(a)), each
root sextuple has exactly one circle with negative bend.
We have a conjecture as to the number of root sextuples
with smallest bend —n.

(viii) By inverting a generalized Apollonian packing
in each circle in the packing, and then again in every
circle, and so on, we obtain a “generalized Apollonian
super-packing”, directly analogous to the Apollonian
super-packing studied in [5]. There is essentially just
one super-packing in which all bends are integral. This
super-packing can be placed in the plane, in exactly four
ways, so that each bx/v/2, by is integral. In each version



CCCG 2008, Montréal, Québec, August 13-15, 2008

of this super-packing, there is a basic rectangle (0, \/ﬁ)
x (0,1) which repeats by translation and reflection to
cover the whole plane. See Figure 4.

Figure 4: A generalized Apollonian super-packing

(ix) Each primitive integral sextuple appears exactly
once in the basic (0, v/2) x (0, 1) rectangle of the super-
packing. Computation suggests that there are some
symmetries within the basic rectangle, like those shown
in [5].

(x) One can consider “ball-bearing” structures of cir-
cles, in which a ring of n balls (each touching two neigh-
bors) have the property that there exist “inner” and
“outer” circles that each touch each of the “balls” in
the ring. The case n = 3 reproduces the Descartes con-
figuration; the case n = 4 gives the sextuples studied in
this paper. The bends of all n+ 2 circles can be integral
only when n = 3,4,6. There is a quadratic equation
whose roots are the bends of the “inner” and “outer”
circles, and whose coefficients involve the bends of the
circles in the ring.

(xi) There is an analog of the Farey series and the as-
sociated Ford circles, in which at every stage we insert
two new fractions (and two new touching circles) in-
stead of just one, between every existing adjacent pair
of fractions. See Figure 5.

There are several open questions.

Is the conjectured formula for the number of
root sextuples correct?

Are the conjectured symmetries within the ba-
sic cell of the super-packing valid?

Do all integers arise as bends of circles in gen-
eralized Apollonian packings?

Is the Hausdorff dimension of our generalized
super-packing the same as in the Apollo-
nian case?

Are there other ways to generalize the classical
Apollonian packing?

Are there other ways to pack integer-bend cir-
cles?
What about higher dimensions?
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