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A generalization of Apollonian packing of circles

Gerhard Guettler*

Abstract

Three circles touching one another at distinct points
form two curvilinear triangles. Into one of these we
can pack three new circles, touching each other, with
each new circle touching two of the original circles. In
such a sextuple of circles there are three pairs of cir-
cles, with each of the circles in a pair touching all four
circles in the other two pairs. Repeating the construc-
tion in each curvilinear triangle that is formed results
in a generalized Apollonian packing. We can invert the
whole packing in every circle in it, getting a “general-
ized Apollonian super-packing”. Many of the properties
of the Descartes configuration and the standard Apol-
lonian packing carry over to this case. In particular,
there is an equation of degree 2 connecting the bends
(curvatures) of a sextuple; all the bends can be integers;
and if they are, the packing can be placed in the plane
so that for each circle with bend b and center (z,y), the
quantities bz /v/2 and by are integers.

1 Introduction and summary

Recently there has been renewed interest in a very old
idea, that of Apollonian packing of circles, in which an
initial configuration of three mutually tangent circles is
augmented by repeatedly drawing new circles in each
curvilinear gap. See for example Mumford et al [9]. We
can also study “super-Apollonian” packings which are
obtained by repeatedly inverting an Apollonian packing
in every circle in it. It is a remarkable fact that Apol-
lonian and super-Apollonian packings exist in which all
the bends (curvatures) are integers. This property was
studied in detail by Graham et al [3], and the group the-
ory associated with these packings has been studied by
the same authors [4-6]. Also, if all the bends are inte-
gers, the super-Apollonian packing can be placed in the
plane so that all the “bend times center” quantities are
integers. Several extensions of the Apollonian idea have
been studied, for example Mauldon [8] studied configu-
rations in which adjacent circles do not touch but have
constant “separation”. Stephenson [10] takes the theory
in rather different directions.

*University of Applied Sciences Giessen Friedberg (Germany),
dr.gerhard.guettler@swd-servotech.de
tAvaya  Labs, Basking Ridge NJ USA 07920

colinm@research.avayalabs.com

Colin Mallows’

Our own interest lies in extending these ideas in new
directions, particularly by packing not one but three
circles within each triangular gap, thus forming sextu-
ples of circles, and in exploring the degree to which the
theory associated with the classical packings can be ex-
tended to cover this case. We find that all the bends
in such a generalized packing can be integers; and there
are results relating to the positions of the centers of the
circles that directly generalize those found by Lagarias
et al [7] in the classical Descartes-Apollonian case.

Into either of the curvilinear triangles formed by three
mutually tangent circles we can pack three more circles,
forming a sextuple. Figure 1 shows the four possible
configurations of a sextuple. There can be zero, one, or
two circles with bend zero (i.e. straight lines), and at
most one bend can be negative, as in case (a).
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Figure 1: Some sextuple configurations

Figure 1: Sextuple configurations

This generalizes the classical Descartes configuration,
in which just one circle is placed in a curvilinear trian-
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gle. Such a sextuple of circles forms an n = 4 example
of what we call a “ball-bearing” configuration, in which
a ring of n circles (each touching two others) have the
property that there are “inner” and “outer” circles that
each touch all n circles in the ring. The n=3 case repro-
duces the classical Descartes configuration. With n =4
the circles come in three pairs, with each of the cir-
cles in a pair touching all four circles in the other two
pairs. The circles of a pair do not touch one another.
The sextuple thus has the symmetry of the vertices of
an octahedron (or of the faces of a cube), rather than
the symmetry of a tetrahedron as in the Descartes case.
Repeating the construction in each curvilinear triangle
that is formed results in a “generalized Apollonian pack-
ing”. See Figures 2 (based on Figure 1(a)) and 3 (based
on Figure 1(c)). In these packings, all the bends are in-
tegers. In this and subsequent Figures, we have drawn
only the circles with bends less than 100. There are also
packings that fill either a half-plane, or the whole plane;
but their bends cannot all be integral.

Figure 3: Another generalized Apollonian packing

Many of the properties of the Descartes configuration
and the standard Apollonian packing carry over to this
case. In later sections we will establish these results:

(i) Given a ring of four circles, formed by two pairs of
circles in a sextuple, there is a quadratic equation (equa-

tion (7) below) whose coefficients involve the bends of
these four circles, the roots of which are the bends of the
other pair of circles in the sextuple. This generalizes the
classical Descartes equation (equation (2) below). Re-
placing each bend by the corresponding bend*(complex)
center gives another result which generalizes the ” Com-
plex Descartes Theorem” of [7].

(ii) There is an analog of “Descartes reflection” (see
[7]) in which three circles (one from each pair in a sex-
tuple, these three circles occupying a curvilinear trian-
gle formed by the other three circles of the sextuple)
are replaced by three circles occupying the other trian-
gle formed by these three circles, thus forming another
sextuple. Given a sextuple, this operation can be per-
formed in eight different ways. See Section 4 below.
Iteration of this operation creates a generalized Apol-
lonian packing in which the interiors of all circles are
disjoint. A packing is determined by any three touch-
ing circles within it.

(iii) all six bends of the circles in a sextuple can be
integers. See Section 5. Examples: in Figure 1(c), the
bends are (0,2; 0,2; 1,1); in Figure 1(a) they are (-1,7;
2,4; 2,4). The integrality property is inherited by all
derived circles.

(iv) if all bends of a sextuple are integers, the sex-
tuple can be placed in the plane so that for each circle
with bend b and center (z,y), the “bend times center”
quantities (bz,by) are of the form m~/2,n with m,n in-
tegers. This property is inherited by the generalized
packing based on this sextuple. See Section 7.

(v) The construction of the generalized packing can
be realised by integral linear operations acting on ma-
trices representing the sextuples. These matrices could
be 6 x 4 matrices with each row containing the “abbc”
or “augmented bend, bend times center” coordinates
introduced in [7], and defined in Section 2 below. How-
ever it is convenient to represent a sextuple by a 4 x 4
matrix in which the first three rows contain the abbc
coordinates of three of the circles in the sextuple (one
from each pair) and the fourth row is the average of the
two rows that represent a pair of circles in the sextuple
(this average is the same for each of the three pairs, see
Lemma 3 below). This row does not represent a circle.
See Section 3.

(vi) There are dual operations acting on the right,
which represent Moebius transformations. See Section
4.

(vii) Among the sextuples with integer bends, there
are “root” sextuples (see [3] and [5]) having the prop-
erty that any application of the reflection operation in
(ii) results in circles with larger bends. These root sex-
tuples can be found by applying a reduction algorithm,
just as in the Descartes case. Except for the special
sextuple with bends (0,2; 0,2; 1,1) (Figure 1(a)), each
root sextuple has exactly one circle with negative bend.
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We have a conjecture ((10) below) as to the number of
primitive root sextuples with smallest bend —n. See
Section 6.

(viii) By inverting a generalized Apollonian packing
in each circle in the packing, and then again in every
circle, and so on, we obtain a “generalized Apollonian
super-packing”, directly analogous to the Apollonian
super-packing studied in [5]. There is essentially just
one super-packing in which all bends are integral. This
super-packing can be placed in the plane, in exactly four
ways, so that each bx/+/2, by is integral. In each version
of this super-packing, there is a basic rectangle (0,+/2)
x (0,1) which repeats by translation and reflection to
cover the whole plane. See Section 7 and Figure 4.

BRI ED7

' V- S N *
H SO oL
CE T TS
SRR
IOERCIS,
> AL

X
oS,

o

e
SOOI
TGN

Figure 4: A generalized Apollonian super-packing

(ix) Each primitive integral sextuple appears exactly
once in the (0,v/2) x (0,1) rectangle of the super-
packing. See Section 7. Computation suggests that
there are some symmetries within the basic rectangle,
like those shown in [5]. See Figure 5 below.

(x) One can consider “ball-bearing” structures of cir-
cles, in which a ring of n balls (each touching two neigh-
bors) have the property that there exist “inner” and
“outer” circles that each touch each of the “balls” in
the ring. The case n = 3 reproduces the Descartes con-
figuration; the case n = 4 gives the sextuples studied in
this paper. The bends of all n+ 2 circles can be integral
only when n = 3,4,6. There is a quadratic equation
(equation (15) below) whose roots are the bends of the
“inner” and “outer” circles, and whose coefficients in-
volve the bends of the circles in the ring.

(xi) There is an analog of the Farey series and the as-
sociated Ford circles, in which at every stage we insert
two new fractions (and two new touching circles) in-
stead of just one, between every existing adjacent pair
of fractions. See Figure 6 below.

2 Conventions and notation

We adopt the conventions in [3-7]. A circle C' with
radius 7 and center (z,y) is described by its “aug-
mented bend, bend*center” (abbc) coordinates a(C') =
(b, b, bx, by) where b is the bend (i.e. curvature) b=1/r,
and where b is the bend of the circle that is the inverse
of C in the unit circle, namely

b="0b(z*+y*) —1/b (1)

Sometimes we will write 2 = ¢ + 4y and work in the
complex plane.

A straight line is a circle with bend zero, and we need
a definition to replace (1). Consider the line with equa-
tion p1x + poy = h where p = (p1,p2) is a unit vector.
This is the limit as A — oo of a circle with center Ap
and radius (A — h), so it makes sense to define the abbc
coordinates of this line as (2h, 0, p1,p2). If the bend of a
circle is positive, the “interior” of the circle contains its
center. In all cases, the abbc coordinates uniquely de-
termine the circle and its orientation. We say that two
circles “touch” or “are tangent” when they have just one
point in common and their interiors are disjoint. We are
considering sets of six circles such that each touches four
others, and the interiors are all disjoint.

We can describe a sextuple S by the 6 x 4 matrix
that has the abbc coordinates of the circles in its rows,
where the circles are taken in what we call standard
order, namely rows 1,2 contain the circles in a pair, as
do rows 3,4 and rows 5,6. Since we can permute the
three pairs, and also can take the circles of a pair in
either order, there are 48 different standard orders, all
representing the same sextuple.

We introduce the matrix (this is twice the inverse of
what is called the “Wilker quadratic form” in [4]), so
named in honor of Wilker [11].

0 —-1/2 0 0

| =12 00 0
W= 0 010
0 00 1

From [4] and [7] we have
Lemma 1 For any two circles C and C’,
a(C)Wa(C")!' = 1 itC ="
=—- if C' and C’ are externally tangent
Proof Simple algebra.

We also introduce the matrix of the “Descartes
quadratic form” (twice what is defined in [4])

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

D=
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Note that D! = D/4. We honor Rene Descartes here
because in 1643 he derived a result connecting the bends
of four mutually tangent circles, equivalent to

2(b7 + b3+ b3 +b3) = (by +ba + b3+ bs)? (2

and this can be written bDb” = 0 where b is the vector
(b1, ba,b3,bs). Given a Descartes configuration consist-
ing of four mutually tangent circles Cy, Cs, C5, Cy with
disjoint interiors, we define the 4 x 4 matrix A as con-
taining rows a(C;), j = 1,2,3,4. From Lemma 1 we
have

AWAT =D

Inverting both sides of this relation we immediately ob-
tain the “Augmented Euclidean Descartes Theorem” of
[7], namely

ATDA =4wW™! (3)

The Descartes equation (2) is the second diagonal el-
ement of this relation. From the (3,4) coordinates we
have the “Complex Descartes equation” of [7], namely

bzDbz! =0

where bz = (b1z1, b222,b323,b424). We will find a gen-
eralization of (3) in the sextuple case, but the same
argument will not work because we have a 6 x 4 matrix
of abbc coordinates, and we get singular matrices.

3 Sextuples

Lemma 2 If C and C' are a pair of (non-tangent) circles
in a sextuple configuration, then

a(C)Wa(C")!' = -3

Proof. The relation is easily verified for the special
sextuple shown in Figure 1(c), with the origin at the
contact-point of the two circles with bend 2, for which
the abbc coordinates are the rows of

2 0 0 1

0 2 0 -1
2 0 0 -1
0 2 0 1
11 vV2 o0
1 1 —/2 0

Any sextuple can be obtained from this one by a Moe-
bius transformation. The group of Moebius transfor-
mations is generated by translations, dilations, conju-
gation, and inversion in the unit circle. Appendix A of
[4] shows that the effect of each of these transformations
on the abbc coordinates of a circle is right-multiplication
by one of a certain group of matrices, and each matrix
m in this group has the property that mWm” = W.
The Lemma follows.

This simple result has an important consequence.
Lemma 3 In a sextuple S containing circles Cy, Cy
etc. we have

a(C1) +a(C]) = a(C2) + a(Cy) = a(Cs) +a(Ch)

Proof. For j =1, 2,3 define w; = (a(C;) +a(C}))/2,
and let F; be the 4 x 4 matrix whose rows are
a(C),a(C>),a(Cs),w; . From Lemmas 1 and 2 we
have that wyWwi = (1 -3 -3+ 1)/4 = —1, and
wiWwl =(-1-1-1-1)/4=—1also. So

F,WF! =K = F,WF] (4)

where
1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 -1

K=

Since all the matrices in (4) are non-singular, this shows
that F; = F2, so that w; = wy. Similarly both are
equal to ws.

This result makes possible a convenient representa-
tion of a sextuple.

F notation

Given a sextuple S containing six circles
C1,C1;02,C%;C3,C%, an F matrix describing the
sextuple is a 4 x 4 matrix whose first three rows contain
the abbc coordinates of three of the circles (one from
each pair) and the fourth row is the average of the abbc
coordinates of the two circles in any pair.

Given a sextuple, there are 48 such representations,
obtained by choosing the pairs in different orders, and
choosing different representatives of each pair. We can
move between different representations by premultiply-
ing F by matrices like

0 -1 0 2
0 0 -1 2
1 0 0 0
0O 0 01

which replaces C1,Cs,Cs by C4,C%,Cy. The set of 48
such integral matrices form a group which we call Perm.

We can recover all the 48 6 x 4 standard representa-
tions as G(S) = EF(S) where

1 0 00

-1 0 0 2

0 1 0 0

B= 0 -1 0 2
0 0 10

0 0 -1 2

The next Theorem generalizes the Descartes equa-
tion.

Theorem 1 Given the bends by, b}, bs, b, of two pairs
of a sextuple, forming a ring, the bends of the other pair,
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each of which touches all four of these circles, are the
roots of the equation

3
25[72—CUU+T—§0'2=0 (5)

where 0 = by + b + by + by, 7 = b2 + b} % + b2 + bl
The same equation holds when each bend b is replaced
by bz, where z is the (complex) center of the circle with
bend b.

Proof. Inverting both sides of the equation
FWF” = K we find

FIK'F=w"!

in which
1 0 0 -1
1 0 1 0 -1
_1__
K ) 0 0 1 -1
-1 -1 -1 1

So if 2w = by + b = be + by, = bs + bf, then
w? —2w(by +bo +b3) + b7 +b65+b05=0  (6)
Since b} = 2w — by, by = 2w — by, we have
o= 4w, = 2(b] + b3) — dw(b; + b2) + 8w?

and (5) follows immediately. The bend*center result
follows by the same argument. This validates claim (i)
of the Introduction. Equation (6) can be regarded as
another generalization of the Descartes equation, and
gives the following result.

Corollary Given three mutually tangent circles with
bends by, b2, b3, enclosing two triangular gaps, the bends
of the three circles that can be inscribed in these gaps
are w — by, w — by, w — b3 and w' — by, w’ — by, w' — b3
where w, w' are the roots of the equation (6). A similar
result holds for the bend*centers.

4 Reflection and generalized Apollonian packing

In [7] the operation of “Descartes reflection” was de-
fined, in which one of the circles in a Descartes quadru-
ple is replaced by the other circle that is tangent to
the same three circles as the chosen one. Given three
mutually tangent circles Cy, Cy, C's with bends by, ba, bs
and (complex) centers z1, 22, 23, the bends by, b)) of the
two circles that are each tangent to these three circles
are the roots of the Descartes equation (2). So “reflec-
tion” of the by circle replaces this circle by one with
bend by = 2(by + bs + b3) — by, and (using the “Gen-
eralized Descartes equation”) with bend*center b)z) =
2(b121 + b22’2 + b32’3) — b4Z4.

This operation can be performed in four ways, taking
each of the circles in the Descartes quadruple in turn.

Using equation (6), we can perform a similar “reflec-
tion” operation on the circles in a sextuple. Specifically,
let F be a 4 x 4 matrix describing a sextuple. Then (6)
has two roots w,w’ say. One of these gives the bends
of the other three circles in the sextuple described by
F, namely 2w — by, 2w — by, 2w — b3. The other root
gives the bends of another set of three circles, namely
2w’ — by, 2w’ — be, 2w’ — b3 which also form a sextuple
with the three circles in the first three rows of F. The
(complex) centers of these circles can be found by using
(6) with the bends replaced by bend*centers. The new
sextuple is the result of inverting the original one in the
circle that passes through the three points of contact
of the three circles that stay invariant. This validates
claim (ii).

Since from (6) w + w' = 2(by + b2 + b3), we do not
need to solve a quadratic explicitly.

Lemma 4 The operation of reflection in circles
C1,C%,C5 can be performed by premultiplying an F
matrix that describes the sextuple, with the abbc co-
ordinates of these three circles in its first three rows, by
the matrix R, where

N OO
N O = O
N = OO
= O O O

Proof. R replaces w by w' and w by w'.

This validates the “reflect” part of claim (v). Note
that reflection is an involution: R? = I. R is the same
as the matrix Sy of [4] that implements reflection of
the fourth circle in a Descartes quadruple. To reflect
in a different triad of circles in the sextuple, we use the
“permute” group Perm to bring the required triad of
circles into rows 1,2,3 of the representation F. So the
operation can be performed in eight ways.

The generalized Apollonian packing based on a given
sextuple Sp is obtained by premultiplying F(Sy) by
“permute” and “reflect” matrices, in all possible ways.
Thus a general sextuple in the generalized Apollonian
packing based on Sy is represented by an F matrix of
the form

RP,RP,_; ---RP;F(S)

(Since R is an involution, we do not need powers of R
higher than the first; since the “permute” matrices form
a group, we never need more than one between two R’s.)

Figure 2 shows a generalized Apollonian packing
based on the sextuple in Figure 1(a).

As in the Descartes case, there are several ways to
regard the generalized Apollonian packing:

(i) as a packing of circles in the plane, each touching
four others; these four all being touched by one other
circle;
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(ii) as a packing of triads of touching circles, each
triad surrounding (and being surrounded by) another
triad of circles;

(iii) as an arrangement formed by configurations con-
sisting of sextuples of circles, interlocking by overlap-
ping sets of three tangent circles.

The view (iii) gives rise to intriguing group-theory
problems, analogous to those studied in Graham et al
[4-5]. We remarked above that in [4] it was pointed
out that the effect of a Moebius transformation on the
abbc coordinates of a circle is right-multiplication by an
element of a certain group. It follows that the same is
true for the effect on an F matrix describing a sextuple.

5 Integral packings

Lemma 5 If the bends of a sextuple are all integers,
the same is true for the bends of all the circles in the
generalized packing based on this sextuple. If the abbc
coordinates of the circles in a sextuple are of the form
(integer, integer, integery/2, integer), then the same is
true for every circle in the packing.

Proof. The matrix R and the matrices in the group
Perm have integer entries.

This lemma is not empty, since we have the examples
in figure 1(a) and 1(c).

We will consider only primitive sextuples, where the
bends have no common factor.

We can generate primitive integral sextuples of bends
as follows. Suppose the bends of three mutually tangent
circles are integers a, b, ¢. From equation (6) we have

w=a+b+cx+/2(ab+ ac+ bc)

so w is an integer only if 2(ab+ac+Db) is an (even) perfect
square, say 4m?2. Only in this case can the bends of the
remaining three circles be integers. Write f = a+b,9 =
a + c. Then

ab+ ac+bc = fg—a® = 2m?

To generate integral sextuples we can choose a and m
arbitrarily, factorize a® +2m? into fg, and hence obtain
b and c¢. Then the other three bends come from 2w —
(a,b,c) where

w=a+b+cx22m

Without loss of generality we can take m non-negative,
but a can have either sign.

The sextuple is primitive iff a, f,g have no common
factor. Thus w.l.o.g. we can take a odd (of either sign),
so that f and g are odd (and positive). Then b and ¢
are even, and w is necessarily odd. This settles claim

(ii).

6 Reduction algorithm and root sextuples.

The size of a sextuple is conveniently measured by the
value of w. Given the bends of a sextuple, by applying a
permutation and then reflecting, we may be able to find
a sextuple with smaller value of w. If this is not possi-
ble, we call this a root sextuple. Except for the special
sextuple (shown in Figure 1(c)) with bends (0,2;0,2;1,1),
a root sextuple has exactly one negative bend. As in the
Descartes case,, starting from a given sextuple, there is
a unique root sextuple that can be reached by repeated
reflections.

Lemma 6 The sextuple described by integer bends
a < b < ¢ < w (satisfying (6)) is a root sextuple iff
w<a+b+c.

Proof. w' > w.

Computation finds the numbers of primitive root sex-
tuples with smallest bend —n, for n = 1,---100, in the
following table.

The number of root sextuples with smallest bend —n

] 12 3 4 5 6 7 8 9 10
n=0+1 1 2 1 3 2 4 3 5 2 8
n=10+: 3 6 4 100 4 9 5 8 5 14
n=20+: 5 12 7 10 8 16 5 18 8 16
n=30+: 9 17 6 18 13 14 10 20 8 26
n=40+: 11 20 11 22 10 26 13 18 15 32

n=50+: 9 30 14 20 16 34 10 32 15 28
n=60+:¢ 16 34 13 33 22 24 17 34 13 52
n=70+: 19 26 19 40 16 38 21 32 21 50
n=80+: 14 42 21 36 25 44 16 42 23 40
n=90+: 29 50 17 50 28 34 25 58 16 62

For example, the three primitive root sextuples with
smallest bend -4 are:

(-4,26; 7,15; 10,12)
(-4,30; 6,20; 13,13)
(-4,46; 5,37; 20,22).

From the counts in the table and several more with
larger values of n, we conjecture a formula for the num-
ber of root sextuples.

Conjecture The number of primitive root sextuples
with smallest bend —n is

k(n) = i nH p7+;<(p) +7(n)

pln
where x(2) = 2, x(p) = —-1,-1,1,1 for p = 1,3,5,7
(mod 8),and the remainder term depends on the number
of different odd prime factors of n, which we name p(n):
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if n is odd, p(n) = 1, then r(n) = ¢(p) where
¢(p) =4,2,2,4 when p=1,3,5,7 (mod 8).

if n is odd and p(n) > 2, r(n) = 2°(

if n is even, r(n) = 4.2°(")

This conjecture constitutes claim (vi).

7 Inversion and the generalized super-packing

Given a generalized Apollonian packing, we can invert
the whole packing in every circle in the packing, and
then again in every circle in the resulting packing, and
so on. The result is what we call a “generalized super-
packing” (Compare [5]). In this packing, every two cir-
cles either touch, or are disjoint. See Figure 4.

It is convenient to regard the super-packing as being
composed of sextuples. We can generate the sextuples
of the super-packing by adding another generator to the
generalized Apollonian group, representing inversion in
the first circle of a general sextuple.

Lemma 7 Given a sextuple S described by an F ma-
trix F(S), the result of inversion in the circle described
by the top row of F is a sextuple S’ with

F(S') = VF(S)
where
-1 0 0 0
21 0 0
V= 2 010
2 0 0 1
Proof. Suppose the rows of F(S) are a,b,c,w.

From (3.26) of [4] (or by simple geometry) we have that
since each of the b, c circles touches the a circle, their
transformed abbc coordinates are given correctly. Since
the b’ circle (whose abbc coordinates are 2w — b) also
touches the a circle, its transformed abbc coordinates
are 2a + 2w — b so that the new fourth row of F' is
(1/2)(2a+ b + 2a+ 2w — b) = 2a + w. Note that V
is an involution. This validates claim (v).

The situation is exactly analogous to that of the stan-
dard Apollonian super-packing, see [5]. It is convenient
to work with the matrix group B that has eight gener-
ators of the form pRp?, with pePerm, which reflect in
the eight different triads in a sextuple, and six genera-
tors of the form pVp? which each invert with respect
to one of the circles in a sextuple. Explicitly, given
a sextuple with circles C1,Cs, Cs,C1,Ch, C4 described
by an F' matrix with the first three rows corresponding
to the first three of these circles, we have Rggo = R as
given above, which reflects leaving the circles Cy, Cs, Cs
invariant,

—3 4 4 4
0 10 0
Rio=1 9 0 1 0
2 2 2 3

which reflects leaving Cf, Cs, C5 invariant, and similarly
Ro10 and Roor,

3 —4 4 12
4 -3 4 12
Ruo=1| o ¢ 1 ¢
2 2 2 7

which reflects leaving Cf, C4, C5 invariant, and similarly
R101 and R011, and ﬁnally

-3 -4 -4 20
-4 -3 -4 20
-4 -4 -3 20
-2 -2 -2 11

R =

which reflects leaving C7, C4, C} invariant. Also we have
V1 = V as above, which inverts with respect to the
circle C1, and similarly Vo and V3, and

-5 0 0 12
-2 1 0 4
Vi=1l 9 01 4
-2 0 0 5

which inverts with respect to the circle C], and similarly
ng and V3/.

We can write a word in the super-group B as U =
U,U,_;---Uy, in which each Uj is one of these gener-
ators R, and V,. Each such word in B has a normal
form, obtained by cancelling all squares, and moving
each appearance of each inversion V as far to the right
(i.e. earlier) as possible, so that V, follows a reflec-
tion that does not leave the circle C, invariant. Then
the sextuples in the super-packing are in 1-1 correspon-
dence with normal-form words in the super-group. We
need to show that there are no identities in this group
other than those described above.

Theorem 2 The generators Rygp etc. and V; etc de-
scribed above are involutions. Also each V; commutes
with the four Rs that leave C; invariant. There are no
other identities among these generators.

Proof. Direct computation verifies the involution
and commutativity relations. The hard part is showing
that there are no other relations. The following argu-
ment mimics the key part of the proof of Theorem 3.1
in [5]. We consider the effect of applying an element of
the group (i.e. a word in normal form) to an arbitrary
basic sextuple Sg. There are two cases. First, the word
contains no inversions. In this case, a reflection R that
leaves circles C,Cy, C3 invariant puts three circles in-
side one of the curvilinear triangles that they form. We
can get out of this triangle only by repeating this re-
flection, but this is not allowed in a normal-form word
until some other reflection has intervened, and then not
all of C,Cs, C5 are still members of the sextuple.

Second, suppose an inversion V; appears. This puts
five circles inside Cj}, and we can only get outside of this
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circle by another application of V;. But in a normal
form word, V; cannot reappear until either (i) another
V, or (ii) an R that does not leave C; invariant, has
intervened. In either case C; is no longer a member of
the sextuple. Thus we can never get back to the original
sextuple.

Theorem 3 The integral super-packing can be placed
in the plane so that all centers are of the form
(m\/(2), n) with m and n integral, in exactly four ways.

Proof The argument exactly parallels that in the
Descartes case, see Theorems 6.2 and 6.3 of [5]. Given
the bends of any primitive integral sextuple S, there is
an unique normal-form word U in the generators of the
super-Apollonian group that reduces it to the special
integral sextuple so = (0,2;0,2;1,1). This sextuple can
be placed in the plane making bx/v/2 and by integers
for every circle, by making the straight lines parallel
to the x-axis, and with the point of contact of the two
bend-2 circles at any point mv/2,n with m and n inte-
gral. Application of inversions in the bend-0 circles and
reflections leaving these circles invariant then fills the
whole plane, and forms just four different placements of
the whole figure, namely with the origin at

(i) the center of a bend-1 circle,

(ii) the point of contact of a bend-1 circle and
one of the lines,

(iii) the contact-point of the two bend-2 circles,

(iv) the point of contact of a bend-2 circle and
one of the lines.

We get only four placements, not eight as in the
Descartes case, because here we cannot reflect in the
line y = = while keeping the values of bz/ \/(2) and by
integral. In each placement, the basic rectangle (0,+/2)
x (0,1) repeats by reflections to cover the whole plane.

Now applying the elements of the word U in reverse
order to the F matrix describing this placed basic sex-
tuple sg, we find exactly one placing of the sextuple S
within each version of the basic rectangle. This vali-
dates claims (vii) and (viii) of the Introduction.

Computation suggests that there are some symme-
tries within the basic rectangle, as in the Descartes case,
namely

circles with even bends appear symmetrically
about = = 1/2/2

circles with bends = 0 mod 8 appear symmet-
rically about z = \/5/4

circles with bends = 2 or = 6 mod 8 appear
symmetrically about y = 1/2

a circle with bend = 4 mod 8 and center x,y
has a mate at v/2/2 — 2,1 —y

See Figures 5(a)-(d). Each circle in these figures is the
largest circle of a unique root sextuple. For example,
the three root sextuples with smallest bend -4, which
we listed in section 6 above, lie within the three largest
circles in Figure 5(c). We do not see any symmetries for
circles with odd bends.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 15

0.0 0.5 1.0 15

Figure 5: (b) Circles with bend =2 mod 8

8 Ball-bearing configurations

We define a “ball-bearing” structure as consisting of a
ring of circles, each touching two neighbors, with the
property that there exist “inner” and “outer” circles
that each touch each of the circles in the ring.
Theorem 4 In an n-ball ball-bearing structure,
where the bends of the “ball” circles are (in order)
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0.0 0.5 1.0 15

1.0

0.8

0.6

0.4

0.2

0.0

0.‘0 0‘.5 l.‘O 1‘.5
Figure 5: (d) Circles with bend =6 mod 8

b1, bo,...b,, the bends of the “inner” and “outer” cir-
cles are the roots of the equation

3
an2—xa+r—%a2:0 (7)

2(b), ™ = (b)), and D, =
(n/2) cot(m/n)?. Also, if the centers of the ring circles
are the complex numbers z1, ..., z,,, the bend*center co-
ordinates of the inner and outer circles are the roots of
the equation

where o =

DnX2—XS+T—%S2=O (8)

where S =Y bjzj, T = > ((bjzj)?).

Remark 1 For n = 3, D3 = 1/2 and (7) is the
Descartes relation that connects the bends of four mu-
tually tangent circles. Also (8) is then the “Complex
Descartes Theorem” of [7].

Remark 2 An entry in MathWorld entitled “Soddy
Circles” gives a formula that is different from ours.
However this must be in error, since it is not homo-
geneous in the bends.

If the bends by, bs, ...b,, are integers, the roots of (13)
can be rational only when n = 3,4,6 (D,, = 1/2,2,9).
Only in these cases can all the bends be integers.

Proof of the Theorem. We start by proving the rela-
tion (7) for a special configuration, in which the “inner”
and “outer” circles are centered at the origin, with the
j-th ring circle having center w?/, where w™ = —1. The
radius of each ring circle is s = sin7/n; the radii of the
inner and outer circles are 1 — s, —(1 + s).

Let ag contain the abbc coordinates of the “inner”
circle, and for j = 1,--- ,n let a; contain the abbc co-
ordinates of the j-th circle in the ring, so that

ap = (8—1,1/(1—8),0,0)
aj = (1/s—s,1/s,cos(2mj/n)/s,sin(2wj/n)/s)

We assemble these vectors in an (n + 1) x 4 matrix A.
Let Q be the n + 1 x n + 1 matrix

D, —117
Q= < -11, I,- f—nlnlg )

where 1,, is the n x 1 column vector (1,1,---1)T. The
equation in the Theorem is bT’Qb = 0 where b is the
vector of bends bT = (1/(1 — s), (1/s)11). Straightfor-
ward computation shows that

T _ N1
A QA_S—2W

where W was defined in Section 2. Picking off the (2,2)
element proves the first claim of the theorem (for this
special case). The second claim follows from the (3,4) x
(3,4) submatrix.

Now let m be any matrix in the Moebius group M.
We remarked in the proof of Lemma 2 that the effect
of a Moebius transformation is to replace A by Am,
and each m in M satisfies mWm” = W. It follows
that m?W'm = W1, so (8) remains true when A
is replaced by Am. Thus the relation holds for every
ball-bearing configuration. This validates claim (ix).

Remark 3 The bends of the ring circles satisfy n —
3 linear identities, as do the “bend*center” quantities.
For n = 4 the identities are by + b3 = by + by and b1z1 +
bszs = byzo+bgzs. Forn = 6 they are by +by = by +b5 =
b3 +b6,b1 +b3 +b5 = b2 -|—b4 +b6, etc. For all n Z 3
a ball-bearing configuration is determined by the abbc
coordinates of any three mutually tangent circles (one
inner or outer, and two “ring” circles) and a “w” vector
which is the average of the abbc coordinates of the n
“ring” circles. Thus we can work with 4 x 4 matrices in
all cases.

Remark 4 Given three mutually tangent circles with
integral bends a,b,c, set ¢ = ab + ac + bc. Then the
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circles can belong to an integral Descartes quadruple iff
q is a perfect square; can belong to an integral sextuple
(in the sense of this paper) iff 2¢ is a perfect square; and
can form part of a n = 6 ball-bearing configuration iff
3q is a perfect square.

Remark 5 In the n = 6 case the basic integral con-
figuration (analogous to the (0,0,1,1) configuration in
the n = 3 case, and (0,2;0,2;1,1) in the n = 4 case) is
(1,1; 0,3,6,6,3,0), consisting of two parallel lines with
two unit circles touching both, and a pile of four circles
between them. This configuration can be placed in the
plane so that all values of bx/v/3 and by are integers.
However it is not the case that all derived bends and
bends*centers are integral.

Remark 6 One can also consider multiple-ring struc-
tures, for example a 1-5-5-1 structure. Here, every circle
touches five others, and the circles have the symmetry
of the vertices of an icosahedron. This suggests another
generalization of Apollonian packing, in which nine cir-
cles are placed in every curvilinear triangle. In this case
the bends cannot all be integers.

Remark 7 Similar constructions are possible in
three dimensions. Between four spheres, each of which
touches the other three, we can (uniquely) pack four
more spheres, touching each other and each touching
three of the original spheres. We leave consideration of
these configurations to another occasion.

9 Generalized Farey series and Ford circles

In the generalized Apollonian packing based on the sex-
tuple (0,2;0,2;1,1) depicted in Figure 1(c), the circles
that touch the lower bend-zero line are analogous to
Ford circles, and their points of contact are analogous
to terms in the Farey series. See Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

Fford circles
Figure 6: Generalized Ford circles

We start with a circle with bend 1 touching the z-

axis at * = 0, and another circle with bend 2, touch-
ing the first one and touching the z-axis at z = /2.
Packing three circles between these gives two new circles
touching the z-axis, the original circles, and each other,
namely a circle with bend 8 touching at = = (1/2)v/2
and another with bend 9 touching at x = (2/3)v/2. Note
that 8 = 222, 9 = 32, and 1/2 = (0+ 1)/(1 + 1),
2/3 = (0+2.1)/(1 4 2.1). This pattern continues. In
general, in a gap between a circle with bend ¢ touch-
ing at © = (p/q)v/2 and another with bend 2s? touch-
ing at = (r/s)y/2, where p is even and r is odd,
we construct a circle with bend (g + 2s)? touching at
z = ((p+ 2r)/(qg + 25))v/2 and another with bend
2(q + 5)* touching at = = ((p +r)/(¢ + 5))v2. Two
fractions p/q,r/s are neighbors iff |ps — qr| = 1. At
every stage, the two types of circles (with bends ¢ and
2r?) alternate. See Figure 6.

10 Some open questions

Is the conjectured formula for the number of
root sextuples correct?

Are the conjectured symmetries within the ba-
sic cell of the super-packing valid?

Do all integers arise as bends of circles in gen-
eralized Apollonian packings?

Is the Hausdorff dimension of our general-
ized packing the same as in the Apollonian
case?

Are there other ways to generalized the classi-
cal Apollonian packing?

Are there other ways to pack integer-bend cir-
cles?

What about higher dimensions?
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