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A Class of Convex Polyhedra
with Few Edge Unfoldings∗

Alex Benton† Joseph O’Rourke‡

Abstract

We construct a sequence of convex polyhedra on n vertices

with the property that, as n→∞, the fraction of its edge

unfoldings that avoid overlap approaches 0, and so the frac-

tion that overlap approaches 1. Nevertheless, each does have

(several) nonoverlapping edge unfoldings.

1 Introduction

An edge unfolding of a polyhedron is a cutting of the
surface along its edges that unfolds the surface to a sin-
gle, nonoverlapping piece in the plane. It has long been
an open question of whether or not every convex poly-
hedron has an edge unfolding.1 See [DO07, Chap. 22]
for background and the current status of this problem.

An early empirical investigation of this question led
to the conjecture that a random edge unfolding of a
random convex polyhedron of n vertices leads to over-
lap with probability 1 as n→∞, under any reasonable
definition of “random” [SO87].2 It is easy to see that
the cuts must form a spanning tree of the polyhedron
vertices. It is known that there are 2Ω(

√
F ) cut trees

for a polyhedron of F faces. So the conjecture says
that “most” of the exponentially many cut trees lead to
overlap. Of course, even if most unfoldings overlap in
this sense, this is entirely compatible with the hypothe-
sis that there always exists at least one non-overlapping
unfolding.

No progress has been made on this random-unfolding
conjecture (as far as we know), but Lucier [Luc06] was
able to disprove several unfolding conjectures by care-
fully arranged polyhedra that force what he calls 2-local
overlap. Although not all our overlaps are 2-local, they
are k-local (in Lucier’s notation) for some small k, so
our work can be viewed as following the spirit of his
investigations.

In this note we construct an infinite sequence of con-
vex polyhedra with the property that most of its unfold-
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ings overlap, in the sense that, as n→∞, the number of
its edge unfoldings that overlap approaches 1. A conse-
quence is that no probabilistic argument could establish
that every convex polyhedron has an edge unfolding.3

2 Banded Hexagon

The construction is based on a particular example
from [O’R07], which showed that it is impossible to ex-
tend band unfoldings to obtain edge unfoldings of pris-
matoids. The details of the motivation for that work are
not relevant here, but we employ its central construc-
tion, which we now describe.

Consider a hexagon formed by replacing each side of
an equilateral triangle with two nearly collinear edges.
The hexagon is then surrounded by a band of six iden-
tical quadrilaterals, forming a slight convexity at all
edges. See Fig. 1. The six vertices of the hexagon A
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Figure 1: Banded hexagon from [O’R07].

are (a0, . . . , a5), and each is connected to its counter-
part bi on the outer rim of the band. The slight convex-
ity means that the curvature at the ai vertices is small.
Cutting and flattening a vertex opens it by an amount
equal to the curvature.

The key property of this banded hexagon is as follows.

Property 1 (Hexagon Overlap) If only one band
edge aibi is cut (as part of the cut tree), so that the
six quadrilateral faces of the band remain connected to-
gether, and all but one of the hexagon edges aiai+1 are
cut, then the unfolding overlaps.

Fig. 2(a-c) illustrates the opening at a3, and (d-f) the
opening at a0. The other possibilities are symmetric.

3 Banded Geodesic Domes

For the purposes of [O’R07], the band quadrilaterals
were chosen to be trapezoids. However, that is not an

3We owe this point to a referee.
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Figure 2: Placements of A when a3 is cut (top row) and
when a0 is cut (bottom row). The attachment edge of
the band to A is blue. Circles indicate overlap. The
band lies outside the red rim. [Fig. 3 in [O’R07].]

essential property, and we modify the construction here
so that the quadrilaterals remain congruent but are no
longer trapezoids. The Hexagon Overlap property only
relies on small curvature at the ai, and the hexagon A
having three acute angles (at {a1, a3, a5}) interspersed
with three nearly π-angles (at {a0, a2, a4}). See ahead
to Fig. 5.

With this flexibility, it is possible to glue together
copies of the banded hexagon construction onto a tri-
angulated surface. We choose to use “geodesic domes”
as our base polyhedron (henceforth: geodomes), a re-
peated meshing starting with the icosahedron that has
nearly equilateral faces. Fig. 3 illustrates two levels of
the geodome construction, with each triangle face re-
placed by a banded hexagon. Let PL be the banded
geodome refined to level L. Level L=0 is based on
the icosahedron. Level L=1 partitions each face of the
icosahedron into four equilateral triangles, and projects
to the circumscribing sphere. And so on. The number of
faces, edges, and vertices of the completed construction
for PL are: F=140·4L, E=300·4L, n=V =160·4L.

We can drive n→∞ by choosing larger and larger val-
ues of L. At L=3, there are n = 10242 vertices.

4 Unfoldings

Although the point of this note is that these banded
geodomes are in some sense difficult to edge-unfold, in
fact each of the PL we constructed can unfold with-
out overlap. Fig. 4 shows unfoldings found by a yet-to-
be-thwarted unfolding procedure described in [Ben08].
Although we have not attempted to formally prove it,
it seems likely that banded geodomes for any L can
be edge-unfolded similarly, roughly by following the
geodesics.
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Figure 3: Banded geodomes for levels L = 0, 2.
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Figure 4: Edge unfoldings of the banded geodomes in
Fig. 3.

All of these unfoldings have the property that each
hexagon has two or more band cuts incident to its ver-
tices (although these cuts are below the resolution of
all but L=0 in Fig. 4(a)). We see how this avoids the
Hexagon Overlap property in the next section.

5 Proof

Overview. The proof has the following overall struc-
ture. First we establish that at least a positive fraction
ρ > 0 of all cut trees that span a finite-sized connected
region C of the surface of PL satisfy the Hexagon Over-
lap property, and so force unfolding overlap. Thus, at
most (1−ρ) of those trees avoid overlap. Then a cut tree
that avoids overlap everywhere in the unfolding must
avoid local overlap in each of these regions. Because
the regions are a finite-size, as L→∞, the number k of
regions also gets arbitrarily large. Thus the fraction of
trees that avoid overlap everywhere is at most (1−ρ)k,
which goes to 0 as k→∞.

Connection Tree. The cut tree T is a spanning tree of
the polyhedron vertices. The dual connection tree T4

is a spanning tree of the faces. In T4, two face nodes
are connected if the faces share an uncut edge. T and
T4 each uniquely determine the other. In this section
we reason mostly with T4.
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One Hexagon. Focus on one hexagon A of the poly-
hedron P . Referring to Fig. 5, let ei = aiai+1, and
ui = aibi. The conditions that lead to Hexagon Over-
lap are: exactly one ei is not cut, and exactly one ui is
cut. In terms of the dual tree T4, this means that the
hexagon is a leaf node, surrounded by a band path of
length 5, as in the figure. Clearly there are 62 such dual
tree patterns leading to Hexagon Overlap (6 choices for
ei and 6 for uj), when one banded hexagon is considered
in isolation.
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Figure 5: e0 is not cut and u3 is cut. All other ei are
cut and all other uj are not cut. Dual tree T4 is shown.

Tiling Clusters. Now we consider a group of 16 banded
hexagons, which together form a nearly equilateral tri-
angular cluster, as shown in Fig. 6. Let h be the central
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Figure 6: C: 16 banded hexagons, with central h.
x1, . . . , x24: surrounding quadrilateral nodes.

banded hexagon in a cluster C. The choice of the size
and shape of C is somewhat arbitrary. Our specific
choice is motivated by two concerns: (1) The surface
of PL is nearly an equilateral lattice tiling of banded
hexagons, and so can itself be tiled by copies of the
nearly equilateral C, for appropriate L. (2) The central
h is sufficiently “buffered” from the boundary of C, in
this case by the 15 other banded hexagons of C, for a
counting argument to go through. Both of these points
will be revisited below.

Counting Overlapping Trees. We now argue that
there are at least a positive fraction ρ > 0 of trees span-
ning C that induce local overlap.

Let T4 be a dual spanning tree of P , and denote by
G4 the forest with all nodes in C deleted. There are
in general many ways to complete G4 to be a span-
ning tree of P . The exact number of completions is
difficult to count because it depends on the structure
of G4. However, we can easily obtain a crude upper
bound as follows. Let EC be the number of dual edges
in C; an explicit count shows that EC = 228. Any
completion must either use or not use each dual edge
in C. Of course many of these “bit patterns” will not
complete G4 to a tree, or not to a spanning tree. But
every valid completion corresponds to one of these bit
patterns. Therefore, the total number of completions m
satisfies m ≤ 2EC .

Let o be the number of completions of G4 that lead to
unfolding overlap. Again it would be difficult to count
o exactly, but we know that the 36 patterns leading to
Hexagon Overlap in h must be avoided, for each forces
local overlap. Moreover, because of the buffer around
h in C, all of these 36 patterns are part of some valid
completion, regardless of the structure of T4 outside C.
We justify this last claim below, but for now proceed
with the argument, assuming o ≥ 36.

Let ρ = o/m be the fraction of completions of G4

that lead to overlap. We have a lower bound on o and
an upper bound on m, so together they provide a lower
bound on the ratio ρ: ρ ≥ 36/2228 ≈ 10−67. The exact
value of this fraction ρ is not relevant to the argument;
we only need that ρ > 0 so that 1−ρ < 1.

Buffering. We return to the claim that h is sufficiently
buffered within C so that for each tree that spans C,
there are at least the 36 overlapping variants identified
above. First we explain why the more natural choice of
C = h does not suffice. Suppose the forest G4 has a
structure such that choosing an edge dual to ui within
h creates a cycle. Then it is not a option to select this
edge to complete G4 to a tree. If this occurs for two
or more of the ui, then the Hexagon Overlap pattern
of Fig. 5 cannot occur within h. Thus, the structure of
G4 outside C forces avoidance of the Hexagon Overlap
property inside C. Thus, not every C contains a hazard
to be avoided, so to speak. We now show that our choice
for C provides sufficient buffering.

Let x1, x2, . . . , x24 be the 24 quadrilateral nodes sur-
rounding and just outside C, each with a dual edge that
crosses into C. Each can be viewed as the root of a tree
in the forest G4. We now show that the 36 critical pat-
terns are part of some completion of G4 to a tree that
spans C and therefore all of PL. We first connect up
all these trees in the forest into one tree via connections
through the quadrilaterals incident to the border of C.
One way to do this is to proceed sequentially from x1 to
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x23, connecting xi to xi+1 if their two subtrees are not
yet connected, but not making the connection if they
already are part of the growing connected component.
(For example, in Fig. 6, perhaps x1 does not need to be
connected to x2, but {x2, x3, x4} should receive connec-
tions.) This connects all of G4 into a single tree without
employing any of the nodes of the central h. For each
of the 36 overlap patterns for h, we are free to connect
up the remainder of C into a spanning tree structure,
which clearly can be done in many ways. Therefore,
for any tree that spans PL and C, there are at least 36
variants inside C that overlap, and so o ≥ 36.

Global Argument. Let H = 20·4L be the number of
hexagons in the polyhedron PL. We showed above that
at most 1−ρ of the dual cut tree patterns inside a given
cluster avoid overlap there (for if we fall into the ρ frac-
tion, overlap is forced).

Imagine now constructing a complete tree T4 cluster-
by-cluster in the tiling, by choosing all the nodes and
arcs in T4 that span one cluster C, before moving to the
next cluster. This is would be an odd way to build the
tree, but with appropriate foresight, any tree could be
constructed in this manner. Selecting the subforest to
span a particular C leads us into the analysis of above:
no matter what the structure of G4 already fixed out-
side of C, there is a fraction ρ of subforests that must
be avoided inside C.

In order to avoid overlap in the complete unfolding,
one of these overlap-avoiding patterns must be selected
for each of the bH/16c clusters that tile the surface.
Thus, the fraction of trees that avoid overlap within all
clusters simultaneously is at most (1−ρ)bH/16c.

Finally, as L→∞, H→∞, and the overlap-avoiding
fraction of all unfoldings goes to 0, while the overlap
fraction goes to 1. This is the main claim of this note.

6 Empirical Data

The argument above only establishes a (very) loose up-
per bound on the ratio of the overlap-avoiding unfold-
ings to the total number of unfoldings. The looseness
of the argument is dramatically revealed by empirical
results. For the L=0 banded geodome, our bound says
that the overlap fraction is at least 10−67, whereas we
found that out of 5.5 million random cut trees, 99.9998%
of the corresponding unfoldings overlap.

Some understanding of this high frequency of overlap
is provided by the empirical observation that, in our
random unfoldings, about 70% unfolded the seven faces
of a banded hexagon connected together as a unit. This
fraction is stable and apparently independent of L (and
therefore of n).4 And when a banded hexagon is un-
folded as a unit, the empirically observed frequency of
local overlap is about 50%. Thus, we would expect the

4We have not attempted a theoretical explanation for this data.

fraction 1 − (1−0.7·0.5)H of all unfoldings to overlap.
For L=0, H=20, this formula (using more accurate fre-
quencies) evaluates to 99.97%. This suggests that local
overlap (within one banded hexagon unit) accounts for
the majority of overlaps, for counting all overlaps only
increases the frequency to 99.9998%.

Another test establishes the empirical difficulty of un-
folding banded polyhedra. In Fig. 7 we compare the
percentages of random unfoldings that overlap among
banded simplicial polyhedra, with the similar percent-
age for random convex polyhedra with the same num-
ber of faces. Although both curves approach 100% as
F increases (in accord with the [SO87] conjecture), the
banded curve approaches 100% much more rapidly.
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Figure 7: Percent of random unfoldings that overlap,
for banded polyhedra and for random convex polyhe-
dra (convex hulls of random points on a sphere). The
F=140 point corresponds to the L=0 geodome.
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