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Polynomial irreducibility testing through Minkowski summand computation
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Abstract

In this paper, we address the problem of deciding ab-
solute irreducibility of multivariate polynomials. Our
work has been motivated by a recent work due to Gao
et. al. [1, 2, 3] where they have considered the prob-
lem for bivariate polynomials by studying the integral
decomposability of polygons in the sense of Minkowski
sum. We have generalized their result to polynomials
containing arbitrary number of variables by reducing
the problem of Minkowski decomposability of an in-
teger (lattice) polytope to an integer linear program.
We also present experimental results of computation of
Minkowski decomposition using this integer program.

1 Introduction

Let f =
∑

α cαXα be a polynomial where α ∈ Nn and
the coefficients cα are from a field, say K. The lat-
tice polytope New(f) = conv({α|cα 6= 0}) is called
the Newton polytope of f . A lattice polytope P is
integrally decomposable if there exist non-trivial lattice
polytopes Q and R such that P is their Minkowski
sum, denoted as Q + R. Ostrowski [4] observed that
if f, g, h are polynomials such that f = g · h, then
New(f) = New(g) + New(h). This gives a simple irre-
ducibility criterion for polynomials [2].

Lemma 1 Let f ∈ K[x1, . . . , xn] and it is not divisible
by any xi for any i. If the Newton polytope of f is inte-
grally indecomposable, then f is absolutely irreducible.

Thus the integral indecomposability of the Newton
polytope is a sufficient condition for testing the absolute
irreducibility of a polynomial. Efficient decomposition
algorithms are given by Silverman and Stein [9] and
Emiris and Tsigaridas [8] for polygons and by Mount
and Silverman [7] for 3-dimensional polytopes. Gao and
Lauder [1] showed that the problem is NP-complete even
in two-dimensions. They gave a pseudo-polynomial time
algorithm to solve the integral decomposition of poly-
gons, and a randomized heuristic algorithm for poly-
topes of higher dimensions [1, 3]. We present an exact
criterion for integral decomposition of arbitrary dimen-
sional lattice polytopes. We show that an integral de-
composition of a polytope exists if and only if its edge-
graph has a graph-minor satisfying certain conditions.
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The criterion is general and applies to non-lattice poly-
topes as well. In the rest of the discussion, polytopes or
convex polytopes would refer to lattice convex polytopes
unless stated otherwise.

2 Oriented Walks and Oriented Weights

An oriented walk in an undirected graph G = (V,E) is
a non-empty sequence of vertices w = v0, . . . , vk, not
necessarily distinct, such that ei = vivi+1 is an edge
of G for all 0 ≤ i < k. The orientation of ei in w
is in the direction −−−→vivi+1. We denote the walk in the
reverse orientation, vk, vk−1, . . . , v0, by wr. If v0 = vk,
then the oriented walk is said to be closed. An oriented
closed walk v0, . . . , vk−1, v0 with k ≥ 3 is said to be a
simple if vi 6= vj for all 0 ≤ i < j ≤ k−1. Simple closed
walks are also called cycles. All closed walks of the form
v0, v1 . . . , vk−1, vk, vk−1, . . . , v1, v0 are called zero-walks.

We define the oriented sum of two oriented closed
walks (or two sets of oriented closed walks) to be that
collection of oriented closed walks which results after
canceling each pair of occurrences of an edge which are
in opposite orientations. The traditional concept of cy-
cle space in algebraic graph theory is defined over the
finite field F2 [5]. In this sense, the sum cancels each
pair of occurrences of an edge without consideration of
their orientations. For example, let abcda and abdca be
two closed walks in a graph. Then the oriented sum
of the two is {abca, abda} while the algebraic sum is
acbda. Observe that the oriented sum is a commutative
and associative operation.

The oriented weight W for a graph G, is a map-
ping from the oriented edges of G to Kn for some
fixed n such that W (xy) = −W (yx) for each edge
xy. We extend this mapping to oriented walks as fol-
lows. Let w = v0v1 . . . vk be an oriented walk, then
W (w) =

∑k−1
i=0 W (vivi+1). Thus W (wr) = −W (w) and

the oriented weight of every zero-walk is zero. An ori-
ented weight W for a graph is said to be non-singular if
W (w) = 0 for each oriented closed walk w in the graph.

Observation 1 If w1 and w2 are oriented closed walks
(or sets of walks) in a graph on which an oriented weight
W is defined, then W (w1 + w2) = W (w1) + W (w2).

Proposition 2 Let G be any graph with oriented weight
W . Let w be any non-zero oriented closed walk in G,
not necessarily simple, then there exists oriented cycles



20th Canadian Conference on Computational Geometry, 2008

w1, . . . , wk, possibly with multiplicity, such that W (w) =
W (w1) + · · ·+ W (wk).

A trivial consequence of this result is that the oriented
weight of any oriented walk can be expressed as the
linear sum of the oriented weight of some oriented cycles
with integer coefficients.

A subset of oriented cycles, B, is called an oriented
basis if the weight of every closed non-zero walk can be
expressed as the sum of the oriented weights of some of
the oriented cycles in B, with integer coefficients.

Through out this paper we will only deal with ori-
ented walks, oriented sum, oriented weight, and oriented
basis. Therefore for simplicity we may often drop the
adjective oriented.

3 Oriented Bases

In this section we describe two oriented bases. The first
is applicable only to the edge-graphs of polytopes and
the second is for general graphs.

Theorem 3 Let G be the edge graph of a polytope.
Then 2-face cycles of the polytope, each oriented in any
one direction, form a basis of G.

Next we show that a set of fundamental cycles of a
graph also forms a basis. Let G = (V,E) be a graph
and T ⊆ G be one of its spanning trees. Let ←→ce denote
the unoriented cycle in the graph T ∪{e} for some non-
tree edge e of G. Then the set of fundamental cycles
(w.r.t. T ) is the collection {ce|e ∈ E(G) \E(T )}, where
ce is ←→ce oriented in any one direction. We assign a
unique integer between 1 and |E(G)| to each edge in G
such that the integer assigned to any edge in E(G) \
E(T ) is greater than all the integers assigned to edges
in E(T ). Let c be a cycle or a set of cycles of G. Then
le(c) denotes that edge in c which has the largest integer
assignment.

Observation 2 For every cycle c, le(c) ∈ E(G)\E(T ).

Theorem 4 Fundamental cycles, each orieted in any
one direction, form an oriented basis.

Proof. In view of Proposition 2 it is sufficient to show
that the weight of every set of cycles can be expressed
as the sum of the weights of some fundamental cycles
with integer coefficients. Assume that it is not true. So
there is at least one set of oriented cycles whose weight
cannot be expressed as the sum of weights of funda-
mental cycles. Let c be such a set such that label of
le(c) is smallest. Let e = le(c). Then, by observation 2,
e ∈ E(G) \ E(T ) where T is some fixed spanning tree.
Let the fundamental cycle of e in G w.r.t. T be ce, ori-
ented in one of the two ways. Suppose e occurs in c
for k1 times in the same orientation as in ce and for k2

times in the opposite orientation. Define a new set of

oriented cycles c′ as c+k1.c
r
e +k2.ce, where k.x denotes

the sum of k copies of x.
The new set c′ of cycles has the property that the

label of le(c′) is strictly less than the label assigned
to e. From the assumption W (c′) can be expressed
as the sum of the weights of fundamental cycles, say,
W (c′) = W (c1) + · · · + W (cm) where each ci is an ori-
ented fundamental cycle. Then W (c) = W (c1) + · · · +
W (cm)+(k1−k2).W (ce). This contradicts the assump-
tion that weight of c cannot be expressed as the sum of
the weights of oriented fundamental cycles. �

4 Convex polytopes

In this section, we state a few basic facts about convex
polytopes. The reader can find more details in [6].

A polytope is the convex-hull of a set of points in
Rn. In this paper a polytope refers only to the “shape”
and the orientation of a polytope so its position in the
space is ignored. Let P be a polytope in Rn. Then
faceω(P) denotes the face of P with an outer normal
ω, given by {x ∈ P|ω.x ≥ ω.y ∀y ∈ P}. The set of
all the outer normals of a face f of P is denoted by
NP(f) and is called the normal cone of the face f . The
Minkowski sum of polytopesQ andR is the object given
by Q + R = {x + y : x ∈ Q, y ∈ R} which is also
a polytope. The locations of Q and R only affect the
location of Q+R, not its shape or orientation. Polytope
Q is said to be a Minkowski summand of a polytope P
if there is a polytope R such that P = Q +R. Let P
be a polytope in Rn. Then GP = (VP , EP) is called the
edge-graph of P where VP is the set of vertices (0-faces)
of the polytope and EP is the set of its edges (1-faces).
We shall use the same symbol, to denote the position
vector of a polytope vertex and the corresponding graph
vertex.

Lemma 5 For any direction ω, faceω(Q + R) =
faceω(Q) + faceω(R).

Lemma 6 Let P = Q + R. Let f1 and f2 be faces
of Q and R respectively with NQ(f1) ∩ NR(f2) 6= ∅,
then f1 + f2 is a face of P with the normal cone being
NQ(f1) ∩NR(f2)

Lemma 7 Let P = Q+R and f ⊂ P be a face. Then
there exists unique faces f1 ⊂ Q and f2 ⊂ R such that
f = f1 + f2.

Lemma 8 For every face f of a polytope in Rn,
dim(f) + dim(N(f)) = n, where dim(·) denotes the di-
mension.

Lemma 9 Let v be a vertex of a face faceω(P)
and u0 be any other vertex of a polytope P.
Then there is a monotonic path in the edge graph
u0, u1, . . . , uj , . . . , uk(= v) such that (ui+1 − ui).ω > 0
for all 0 ≤ i ≤ j and (ui+1−ui).ω = 0 for all j ≤ i < k.
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4.1 Geometric Weight and Derived Weight

The oriented weight W = {wuv = v−u}uv∈EP assigned
to GP is called the geometric weight of GP , where v−u
is the displacement vector from vertex u to vertex v in
the space.

Observation 3 The geometric weight of an edge graph
of a polytope is non-singular.

Consider a graph G with non-singular weight
W = {wxy}xy∈E(G). Then the weight Wα =
{αxy.wxy}e∈E(G), where 0 ≤ αxy = αyx ≤ 1 for
all xy ∈ E(G), is referred as derived weight of W if
it is also non-singular. Further, the weight given by
{(1− αxy).wxy}xy∈E(G) is denoted by W1−α. Since α’s
are independent of the orientation of the edge, we may
express αxy = αyx by αe where e denotes the corre-
sponding edge.

Observation 4 Let W be a non-singular weight of
some graph G. Then Wα is a derived weight iff W1−α

is also a derived weight.

4.2 Polytope of embedding

Let G be a connected graph with a non-singular weight
W where the vectors in the weight belong to Rn. Let
v0 be a fixed vertex of G. We embed each vertex of
G into Rn by a mapping φW : V (G) → Rn as follows.
φW (v0) = ~0; and for all u ∈ V (G) − {v0}, φW (u) =
W (Pu) where Pu is any arbitrary walk from v0 to u
in G. The mapping φW is well defined as W is non-
singular. The convex-hull of the point set {φW (u) : u ∈
V (G)} defines a polytope denoted by φW (G). Vertices
of this polytope are obviously from the set {φW (u) : u ∈
V (G)}. We show that the converse is also true. It may
be noted that the choice of v0 is immaterial since it does
not affect the shape or the orientation of the resulting
polytope.

Let GP be the edge graph of polytope P and W its
geometric weight. Let Wα be a derived weight from W .
Then the polytope φWα

(GP) is called a derived polytope
of P and denoted by Pα. For simplicity we shall use
φα in place of φWα , where W should be clear from the
context. We have the following important result.

Lemma 10 For each vertex v of P, φα(v) is a vertex
of Pα.

Lemma 11 Every derived polytope is a Minkowski
summand of the original polytope.

Proof Sketch If Pα is a derived polytope of P, then
we show that P = Pα + P1−α. �

Next we will show the converse.

Lemma 12 Let Q be a Minkowski summand of a poly-
tope P then it is a derived polytope of P.

Proof Sketch Let P = Q + R. If e is an edge of P,
then there exists unique edge-edge or edge-vertex pair
e′ ∈ Q and e′′ ∈ R such that e = e′ + e′′. Let W be the
geometric weight of GP and Wα be its derived weight
with αe = |e′|/|e| for all e ∈ EP . Then Q is equal to
the derived polytope Pα. �

Combining lemma 11 and 12 we have the main result.

Theorem 13 For any polytope P, a polytope Q is a
Minkowski summand iff Q is some derived polytope of
P.

The theorem can be equivalently stated as following.

Corollary 14 A polytope has a proper Minkowski sum-
mand iff its edge graph has a proper derived weight (nei-
ther all αe are 0 nor are all 1).

Corollary 15 For any lattice polytope P, a lattice poly-
tope Q is a Minkowski summand iff Q is a derived poly-
tope Pα such that all components of αe.(~v − ~u) are in-
tegers for all edges e = uv ∈ EP .

5 Computation of Minkowski summand

The Corollary 14 suggests that to discover a Minkowski
summand of a polytope we only need to find if its edge
graph has a derived weight. In this section we formulate
a linear program (LP) which is feasible if and only if a
derived weight exists.

Let P be a polytope. Each edge of the polytope e =
uv, has the geometric weight wuv = ~v − ~u (equivalently
wvu = ~u−~v). To compute a derived weight, we define a
variable xe for each edge e. The weight {w′uv = xe.(~v−
~u) would be a derived weight if and only if the weight
of each basis cycle is zero (Theorem 3). The problem
can be stated as a linear feasibility program.

Let B be a basis of GP . Let c ∈ B be denoted as
u0, u1, . . . , um, um+1(= u0), where uj are the vertices
on the cycle and let the edge ujuj+1 be denoted by ej .
Then the linear feasibility program (LP) is∑

j xej .( ~uj+1 − ~uj) = ~0, ∀c ∈ B, [P1]
subject to
0 ≤ xe ≤ 1, ∀e ∈ EP ;

∑
e∈EP

xe > 0;
and

∑
uv∈EP

(1− xuv) > 0.

The solution of the LP gives a derived weight of GP .
The corresponding polytope, which is a summand of P,
can be computed using the embedding described in the
previous section. A trivial solution of this LP is xe = c
where c is a constant in the interval (0, 1). This gives
Minkowski summands, both of which are similar to the
original polytope.

If P is a lattice polytope and the summand should
also be a lattice polytope, then we need to satisfy an
additional condition that xe(~v−~u) has all integral com-
ponents, i.e., xe.gcd(~v − ~u) must be an integer (recall
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that gcd(~a) is the gcd of all the components of ~a). This
additional condition transforms the LP into the follow-
ing linear integer feasibility program (IP) by defining
integral variables ye for xe.gcd(~v − ~u).∑

j yej
.( ~uj+1 − ~uj)/gcd( ~uj+1 − ~uj) = ~0, ∀c ∈ B, [P2]

subject to
0 ≤ yuv ≤ gcd(~v − ~u), ∀e ∈ EP ;∑

e∈EP
ye > 0; and

∑
e∈EP

(gcd(~v− ~u)− ye) > 0, where
ye are integer variables.

The number of variables in the IP is equal to the
number of the edges in the polytope, |EP |. The num-
ber of equations is n times the number of cycles in the
basis, which is |EP | − |VP | + 1 in case B is the set of
fundamental cycles.

6 Experimental Results

We have discussed earlier that Gao and Lauder [1] have
shown that the Minkowski decomposition of convex lat-
tice polytope is an NP-complete problem even in 2 di-
mensions. Therefore no exact method is expected to be
polynomial in complexity. In this section we show that
the proposed solution based on solving an integer linear
program is a reasonably practical approach.

Given positive integers d and an n, we randomly gen-
erate n lattice points in Rd. In the first step we compute
the edge-graph of the convexhull of these points. In the
second step we solve the integer program P2. The edges
of the polytope are computed by solving a linear pro-
gram for each pair of vertices, checking whether the line
segment connecting them is a face or not. We use GLPK
(GNU linear programming kit) to solve the LP’s and the
IP. The experiments were carried out on a 32-bit ma-
chine running on Intel Pentium 4 processor with 2 GB
RAM and the code was written in the C programming
language.

We ran ten instances of each case and reported the
average time in the Tables 1 and 2. As the method
is exact the success rate is always 100%. The times
consumed in the two steps are reported separately to
highlight the fact that the first step used up most of the
time. This is because we could not find an efficient al-
gorithm to compute the edges of a polytope. From Gao
and Lauder’s experiments [3] we see that their method
is more reliable for higher dimensions (d) and smaller
point-sets (n). In lower dimensions our method is com-
petative with their method in terms of the time. Since
our method is exact, we believe its complements their
algorithm.

7 Conclusion

We have presented a criterion for Minkowski decom-
position, general as well as integral. This reduces the
problem of computing Minkowski summand into a lin-
ear (integer) program. We have reported experimental

Table 1: Time(secs) to find the edges
Points, n

Dimension, d 10 50 100 200

2 0.13 0.38 0.49 0.54

5 0.46 9.24 30.39 106.76

10 0.49 16.93 89.17 590.94

20 0.50 18.88 113.93 851.37

Table 2: Time(secs) to decide indecomposability, i.e.,
time to solve IP

Points, n
Dimension, d 10 50 100 200

2 0.00 0.01 0.01 0.01

5 0.01 0.08 0.17 0.35

10 0.01 0.42 1.72 6.48

20 0.02 0.81 3.74 18.70

results. The performance of this approach can be im-
proved significantly by using an efficient algorithm to
compute the edges of the polytope. We believe this
would give a performance comparable with the heuris-
tic method proposed in [1].

References

[1] S. Gao and A. G. B. Lauder Decomposition of Poly-
topes and Polynomials. Discrete and Computational
Geometry , 26:89–104, 2001.

[2] S. Gao Absolute irreducibility of polynomials via New-
ton polytopes. J. of Algebra , 231:501–520, 2001.

[3] S. Gao and A. G. B. Lauder Fast absolute irre-
ducibility testing via Newton Polytopes. preprint
http://www.math.clemson.edu/faculty/Gao/papers/
fastabs.pdf, 14 pages, 2004.

[4] A. M. Ostrowski Uber die Bedeutung der Theorie der
konvexen Polyeder fur die formale Algebra. Jahres-
berichte Deutsche Math. Verein , 30:98–99, 1921.

[5] Reinhard Diestel Graph Theory. Graduate text in Math-
ematics, Springer, 173, July 2005
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