
CCCG 2008, Montréal, Québec, August 13–15, 2008

Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted

Fixed Orientation Metrics

Christian Wulff-Nilsen∗

Abstract

Let G be a graph embedded in the L1-plane. The stretch
factor of G is the maximum over all pairs of distinct ver-
tices p and q of G of the ratio LG

1 (p, q)/L1(p, q), where
LG

1 (p, q) is the L1-distance in G between p and q. We
show how to compute the stretch factor of an n-vertex
path in O(n log2 n) worst-case time and O(n) space and
we mention generalizations to trees and cycles, to gen-
eral weighted fixed orientation metrics, and to higher
dimensions.

1 Introduction

For t ≥ 1, a t-spanner for a set of points is a network
interconnecting the points such that the distance in the
network between any pair of the given points is at most
t times longer than the shortest possible distance be-
tween them. The smallest t for which the network is a t-
spanner is called the stretch factor of the network. Com-
puting networks with small stretch factors is an active
area of research. For more on spanners, see e.g. [3, 2, 4].

An interesting dual problem is the following: given a
network interconnecting a set of n points, what is the
stretch factor of this network?

Fast algorithms for this problem are known only for
simple graphs in the Euclidean plane. It has been
shown that the stretch factor of a path in the Eu-
clidean plane can be found in O(n log n) expected time
and that the stretch factor of a tree and a cycle can
be found in O(n log2 n) expected time [1]. Using para-
metric search gives (rather complicated) O(npolylog n)
worst-case time algorithms for these types of networks.

In the plane, a weighted fixed orientation metric [5, 6]
is specified by a fixed set V of vectors and the distance
between a pair of points is defined as the length of a
shortest path between them consisting of line segments
all with weighted orientations from V .

To our knowledge, the problem of efficiently comput-
ing the stretch factor of networks in weighted fixed ori-
entation metrics has not received any attention. Since
these metrics may be used to approximate other metrics
and due to their applications in VLSI design, we believe
this problem to be an important one.

∗Department of Computer Science, University of Copenhagen,

koolooz@diku.dk

In this paper, we give an O(n log2 n) worst-case time
algorithm for computing the stretch factor of an n-
vertex path embedded in the L1-plane and we men-
tion generalizations to trees and cycles, to arbitrary
weighted fixed orientation metrics, and to higher dimen-
sions. Compared to the complicated worst-case time al-
gorithms for the Euclidean metric, our algorithms are
relatively simple and should be easy to implement.

The organization of the paper is as follows. In Sec-
tion 2, we make basic definitions and introduce some
notation. In Section 3, we consider the problem of com-
puting the stretch factor of paths in the plane equipped
with the L1-metric and present an algorithm for this
problem. In Section 4, we mention generalizations of
our algorithm and we make some concluding remarks in
Section 5.

2 Basic Definitions

For points p = (px, py) and q = (qx, qy), the L1-distance

L1(p, q) between p and q is |qx − px| + |qy − py|.
Let G be a connected graph embedded in the plane.

To distinguish between a vertex of G and its location in
the embedding, we write its location in boldface.

For two vertices u and v of G, define LG
1 (u, v) as

the length of a shortest path between u and v in G,
where the length of a path is measured as the sum of
L1-lengths of the edges on the path in the embedding.

For distinct vertices u and v in G, the detour δG(u, v)
between u and v in G is defined as LG

1 (u, v)/L1(u, v).
The stretch factor δG of G is the maximum detour over
all pairs of distinct vertices of G. If u = v for two
distinct vertices u and v of G, we define δG = ∞.

For p ∈ R2 and r ≥ 0, we let B1(p, r) denote the
closed disc in (R2, L1) with center p and radius r.

3 Stretch Factor of Paths

In the following, let P = p1 → p2 → · · · → pn be
an n-vertex path embedded in (R2, L1). In this sec-
tion, we show how to compute the stretch factor of P
in O(n log2 n) time and O(n) space.

We will make the simplifying assumption that all ver-
tices of P have distinct locations. For otherwise, we
would have δP = ∞ and checking whether all vertices
have distinct locations can be done in O(n log n) time.

20th Canadian Conference on Computational Geometry, 2008

In all the following, let N = {1, . . . , n}. For i ∈ N
and δ > 0, let Bi(δ) denote the disc B1(pi, ri(δ)), where
radius ri(δ) = LP

1 (pi, pn)/δ. The following lemma re-
lates these discs to the stretch factor of P .

Lemma 1 The stretch factor of P is δP = inf{δ >
0|Bj(δ) * Bi(δ) for all i, j ∈ N, i 6= j}.

Proof. Let δ > 0. For any i, j ∈ N ,

LP
1 (pi, pj)

δ
=
|LP

1 (pi, pn) − LP
1 (pj , pn)|

δ
= |ri(δ) − rj(δ)|.

Hence,

δP < δ ⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > |ri(δ) − rj(δ)|

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > ri(δ) − rj(δ)

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) + rj(δ) > ri(δ)

⇔ ∀i, j ∈ N, i 6= j : Bj(δ) * Bi(δ).

�

The idea of our algorithm is to see how much the size of
the above defined discs can be increased before at least
one of them includes another disc. By Lemma 1, this
will then give us the stretch factor of path P .

For each i ∈ N and for w = 1, 2, 3, 4, define Pw(i)
as the set of vertices of P \ {pi} belonging to the wth
quadrant of pi. Lemma 1 gives

δP = max
w=1,2,3,4,i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)}.

Hence, δP is the maximum of four δ-values, one for
each value of w. By symmetry, we may restrict our
attention to computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)}. (1)

The following lemma gives a useful way of determin-
ing whether Bj(δ) is contained in Bi(δ) when pj belongs
to the first quadrant of pi.

Lemma 2 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, define ri(δ) and rj(δ) as the rightmost points

in Bi(δ) and Bj(δ), respectively. Then

Bj(δ) ⊆ Bi(δ) ⇔ ri(δ) · (1, 1) ≥ rj(δ) · (1, 1).

Proof. The point rj(δ) is to the right of pj and belongs
to the first quadrant of pi, implying that L1(pi, rj(δ)) =
L1(pi, pj) + rj(δ). Since Bj(δ) ⊆ Bi(δ) if and only if
L1(pi, pj) + rj(δ) ≤ ri(δ), we have

Bj(δ) ⊆ Bi(δ) ⇔ L1(pi, rj(δ)) ≤ ri(δ)

⇔ rj(δ) ∈ Bi(δ)

⇔ (rj(δ) − ri(δ)) · (1, 1) ≤ 0,

since vector (1, 1) is normal to the part of the boundary
of Bi(δ) in the first quadrant of pi. �

(b)(a)

fi

fj

fk

1/δ
1/δ1 1/δ2

li

pi

pj
pk

(0, 0)

Figure 1: Illustration of Lemma 3. (a): L1-discs Bi(δ),
Bj(δ), and Bk(δ) for two values of δ: δ1 (bold bound-
aries) and δ2. (b): The corresponding functions fi, fj ,
and fk. Lower envelope li is shown in bold. The dis-
tances in (a) between the dotted line and the black parts
of L1-discs correspond to values of functions fi, fj, and
fk at 1/δ1 and 1/δ2 in (b). Note that Bk(δ2) ⊆ Bi(δ2).
For all 1/δ < 1/δ2, Bj(δ) * Bi(δ) and Bk(δ) * Bi(δ).

Recall that, for any i ∈ N , ri(δ) = LP
1 (pi, pn)/δ.

Hence, the dot product ri(δ) · (1, 1) of Lemma 2 is an
affine function of 1/δ, i.e. on the form a(1/δ)+ b, where
a and b are constants. Denote this function by fi.

Associate with each pi a lower envelope function li of
1/δ, defined by

li(1/δ) = min{fj(1/δ)|pj ∈ P1(i)}.

Our goal is to compute (1). The following lemma relates
this value to the intersection between fi and li.

Lemma 3 There is at most one intersection point be-

tween fi and li on interval]0,∞[. If 1/δ′ is such a point

then

δ′ = inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)}.

If there is no intersection point then for any δ > 0 and

any pj ∈ P1(i), Bj(δ) * Bi(δ).

Proof. Figure 1 illustrates the lemma.
For any point p in the first quadrant of pi, the value

p · (1, 1) is minimized when p = pi. It follows that
fi(1/δ) < li(1/δ) for all sufficiently small 1/δ. Hence,
since the graph of li on]0,∞[is a chain of line segments
(and one halfline) whose slopes decrease as we move
from left to right, there is at most one intersection point
1/δ′ between fi and li on interval]0,∞[.

If intersection point 1/δ′ exists, the above shows that,
on interval]0,∞[, fi(1/δ) < li(1/δ′) if 1/δ < 1/δ′ and
fi(1/δ) > li(1/δ′) if 1/δ > 1/δ′. And if no intersection
point exists then fi is below li on interval]0,∞[.

Lemma 2 shows that Bj(δ) ⊆ Bi(δ) if and only if
fi(1/δ) ≥ fj(1/δ). Hence, Bj(δ) * Bi(δ) for all pj

in the first quadrant P1(i) of pi if and only fi(1/δ) <
li(1/δ). This shows the lemma. �

CCCG 2008, Montréal, Québec, August 13–15, 2008

For each i ∈ N , let δi = 1/xi, where xi is the inter-
section point between fi and li. If no such point exists,
set δi = 0. Lemma 3 shows that (1) equals maxi∈N δi.

What remains therefore is the problem of computing
the intersection (if any) between fi and li for all i. In
the following, we describe an algorithm for this problem.

3.1 The Algorithm

To simplify the description of the algorithm, we will
leave out some of the details and return to them in Sec-
tion 3.2, where we show how to obtain O(n log2 n) run-
ning time and O(n) space requirement.

The algorithm stores vertices of P in a balanced bi-
nary search tree T of height Θ(log n) which is similar to
a 1-dimensional range tree. Let V be the set of vertices
of P . If V contains exactly one vertex, the root r of T
is a leaf containing this vertex. Otherwise, r contains
the median m of x-coordinates of vertices of V (in case
of ties, order the vertices on the y-axis) and the subtree
rooted at the left resp. right child of r is defined recur-
sively for the set of vertices of V with x-coordinates less
or equal to resp. greater than m.

Each node v of T corresponds to a subset Sv of ver-
tices of P , namely those vertices stored at the leaves
of the subtree of T rooted at v. We refer to these Sv-
subsets as canonical subsets.

Note that each vertex pi of P belongs to Θ(log n)
canonical subsets, namely those corresponding to ver-
tices visited on the path from the root of T to the leaf
containing pi.

In addition to a median, we associate with each node
of T a lower envelope of line segments. This lower en-
velope is initially empty and will be updated during the
course of the algorithm.

After having constructed T , the algorithm makes a
pass over the vertices of P in order of descending y-
coordinate. In case of ties, vertices are visited from
right to left.

The following invariant will be maintained through-
out the course of the algorithm: for each vertex v of T ,

the lower envelope associated with v is the lower enve-

lope of fi-functions of vertices in Sv visited so far.
When a vertex pi of P is visited, the invariant is

maintained by adding fi to the Θ(log n) lower envelopes
associated with vertices on the path from the root of T
to the leaf containing pi.

When the algorithm visits a vertex pi, it needs to find
the intersection between fi and li. However, explicitly
computing li is too time-consuming.

Instead, we make use of our invariant which ensures
that lower envelopes of visited vertices of all canonical
subsets are given. The vertices in the first quadrant
of pi have all been visited and the set P1(i) of these
vertices is therefore the union of visited vertices of the
canonical subsets to the right of pi. So the intersection

4

4

2

1

21

3

3 5 6

5 7

87

1

2

3

4

6
8

(a) (b)

7

5

6

Figure 2: (a) Eight points shown with x-coordinates
1, . . . , 8. The set of points with x-coordinate greater
than 3 is the union of two canonical subsets. (b) The
two canonical subsets are found by picking right children
(black) on the path from the root of the range tree to
the leaf with median 3.

between fi and li is the leftmost of the intersections be-
tween fi and the lower envelopes associated with these
canonical subsets.

Since canonical subsets may overlap, not all canonical
subsets to the right of pi are needed. The idea is to pick
a small number in order to minimize running time.

The algorithm picks canonical subsets (or more pre-
cisely, nodes of T corresponding to canonical subsets)
as follows. Let vi be the leaf of T associated with pi.
For each vertex v on the path from the root r of T to
vi, the canonical subset associated with the right child
of v is picked unless this child itself is on the path from
r to vi, see Figure 2.

It is easy to see that the visited vertices in the union
of the picked canonical subsets are exactly the vertices
of P1(i). Since the height of T is Θ(log n), the number
of picked canonical subsets is O(log n).

A fine point: if there are vertices of P above pi and
with the same x-coordinate as pi, they may not all be-
long to the picked canonical subsets even though they
belong to P1(i). We may ignore these however, since
they will be picked when second quadrants are handled.

Intersections between fi and each of the lower en-
velopes of the picked canonical subsets are then com-
puted and the leftmost of these is picked as the inter-
section between fi and li.

From these intersections, the value (1) is obtained.
This is repeated for the other three quadrants, giving
the stretch factor of P .

3.2 Running Time and Space Requirement

In the description of the algorithm above, we left out
some details. We now focus on them in order to analyze
the running time of the algorithm.

It is easy to see that tree T can be constructed top-
down in O(n log n) time. In the y-descending pass over
the vertices of P , maintaining our invariant requires
adding each fi-function to O(log n) lower envelopes.

20th Canadian Conference on Computational Geometry, 2008

Finding these lower envelopes takes O(log n) time by
a traversal from the root to a leaf of T using the me-
dians at vertices to guide the search. It is easy to see
that an fi-function may be inserted in a lower envelope
in O(log n) amortized time. Thus, the total time spent
on maintaining the invariant is O(n log2 n).

Next, we need to analyze the time it takes to com-
pute the intersection between fi and li for each i. This
involves picking O(log n) canonical subsets and comput-
ing the intersection between fi and the lower envelopes
associated with these subsets.

Clearly, the time it takes to find the canonical sub-
sets is bounded by the height of T which is Θ(log n).
Since each lower envelope l is a monotonically increas-
ing function and its graph consists of line segments (and
one halfline), computing the intersection between fi and
l can be done in O(log n) time by using an appropri-
ate data structure. It follows that our algorithm has
O(n log2 n) running time.

The algorithm described above has O(n log n) space
requirement. To improve space requirement to linear,
we modify the algorithm so that, instead of making only
one y-descending pass over the vertices of P , it makes
h(T) passes (for each of the four quadrants), where h(T)
is the height of T . In the kth pass, only lower envelopes
at level k-nodes of T are updated; all other nodes of T
contain empty lower envelopes. And only intersections
between fi-functions and lower envelopes at level k of
T are computed.

This gives the first main result of the paper.

Theorem 4 The stretch factor of an n-vertex path in

(R2, L1) can be computed in O(n log2 n) time and O(n)
space.

4 Generalizations

In this section, we present generalizations of our algo-
rithm. Proofs have been omitted due to space con-
straints.

By using ideas similar to those in [1], we obtain gen-
eralizations to trees and cycles. And by using higher
dimensional range trees in Section 3.1, it is relatively
easy to generalize our algorithm to (Rd, L1). This gives
the following result.

Theorem 5 Let G be an n-vertex graph embedded in

(Rd, L1), d ≥ 2. The stretch factor of G can be com-

puted in O(n logd n) time when G is a path and in

O(n logd+1 n) time when G is a tree or cycle. Space

requirement is O(n).

In two dimensions, we have generalized our algorithm
to weighted fixed orientation metrics. Basically, we lin-
early map cones in such metrics to quadrants and then
apply our algorithm for the L1-metric.

Theorem 6 Let G be an n-vertex graph embedded in

the plane equipped with a weighted fixed orientation met-

ric defined by λ ≥ 2 weighted orientations. The stretch

factor of G can be computed in O(λn log2 n) time when

G is a path and in O(λn log3 n) time when G is a tree

or cycle. Space requirement is O(n).

Suppose that we are not only interested in computing
the stretch factor but also in finding a pair of vertices for
which the detour between them equals the stretch factor
of the graph. The following theorem shows that this can
be done without affecting time and space bounds.

Theorem 7 Within the same time and space bounds,

all algorithms described above can be modified to com-

pute, for every vertex pi, a vertex pj maximizing the

detour between pi and pj in the graph. In particular, a

vertex pair achieving the stretch factor of the graph can

be found within these time and space bounds.

5 Concluding Remarks

Given an n-vertex path in (R2, L1), we showed how to
compute its stretch factor in O(n log2 n) worst-case time
and O(n) space. We mentioned generalizations to cycles
and trees, to higher dimensions and to weighted fixed
orientation metrics in the plane.

An obvious question is whether our algorithms are
optimal with respect to running time. In the Euclidean
plane, an Ω(n log n) lower bound is known for paths
and trees and it is easily seen to hold for the L1-metric.
Thus, there is a gap of log n for paths and log2 n for
trees between our time bounds and this lower bound. Is
it possible to handle more general types of graphs?

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P.
Morin, M. Sharir, and M. Soss. Computing the Detour
and Spanning Ratio of Paths, Trees and Cycles in 2D
and 3D. Discrete and Computational Geometry, 39 (1):
17–37 (2008).

[2] D. Eppstein. Spanning trees and spanners. In J.-R.

Sack and J. Urrutia, editors, Handbook of Computa-

tional Geometry, pages 425–461, Elsevier Science Pub-
lishers, Amsterdam, 2000.

[3] G. Narasimhan and M. Smid. Geometric Spanner Net-
works. Cambridge University Press, 2007.

[4] M. Smid. Closest point problems in computational ge-
ometry. In J.-R. Sack and J. Urrutia, editors, Hand-

book of Computational Geometry, pages 877–935, Else-
vier Science Publishers, Amsterdam, 2000.

[5] K. J. Swanepoel. The Local Steiner Problem in Normed
Planes. Networks, 36(2):104–113, 2000.

[6] P. Widmayer, Y. F. Wu, and C. K. Wong. On Some
Distance Problems in Fixed Orientations. SIAM Jour-

nal on Computing, 16(4): 728–746, 1987.

