
CCCG 2008, Montréal, Québec, August 13–15, 2008

Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted

Fixed Orientation Metrics

Christian Wulff-Nilsen∗

Abstract

Let G be a connected graph with n vertices embedded
in a metric space with metric δ. The stretch factor
of G is the maximum over all pairs of distinct vertices
u, v ∈ G of the ratio δG(u, v)/δ(u, v), where δG(u, v) is
the metric distance in G between u and v. We con-
sider the plane equipped with a weighted fixed orienta-
tion metric, i.e. a metric that measures the distance
between a pair of points as the length of a shortest
path between them using only a given set of σ ≥ 2
weighted fixed orientations. We show how to compute
the stretch factor of G in O(σn log2 n) time when G is
a path and in O(σn log3 n) time when G is a tree or a
cycle. For the L1-metric, we generalize the algorithms
to d-dimensional space and show that the stretch factor
can be computed in O(n logd n) time when G is a path
and in O(n logd+1 n) time when G is a tree or a cycle.
All algorithms have O(n) space requirement. Time and
space bounds are worst-case bounds.

1 Introduction

Designing modern microchips is a complicated process
involving several steps. One of these steps, the so called
routing step, deals with the problem of finding a layout
of wires on the chip interconnecting a given set of pins.

Many factors need to be taken into consideration
when finding such a layout. An important measure is
the total wire length. Minimizing this will help reduce
heat generation, space on the chip, and signal delay. For
this reason, Steiner minimal trees play an important role
in VLSI design.

Due to manufacturing limitations, wires are typically
restricted to having a finite set of fixed orientations.
This has lead to an interest in the so called fixed ori-
entation metrics, initially considered by Widmayer et
al. [21], where the distance between a pair of points is
the length of a shortest path between them using a fixed
set of orientations.

Routing is typically performed in several layers with
only one orientation allowed in each layer. Some lay-
ers may be more easily congested than others and thus,
some orientations of wires may be less desirable than

∗Department of Computer Science, University of Copenhagen,

koolooz@diku.dk

others [22]. For this reason, fixed orientatation met-
rics with a weight associated with each orientation have
been considered.

Steiner minimal trees in the plane equipped with
the rectilinear metric and more recently in general
(weighted) fixed orientation metrics have received a
great deal of attention [11, 13, 14, 7, 6, 18, 4, 5, 19].
A disadvantage of using Steiner minimal trees is that
wire distance between some pairs of pins may be very
large compared to the shortest possible distance. As
a consequence, signal delay will be high between such
pairs.

To obtain networks with small detours between any
pair of points, spanners have been considered. For t ≥ 1,
a t-spanner for a set of points is a network interconnect-
ing the points such that the distance in the network
between any pair of the given points is at most t times
longer than the shortest possible distance between them.
The smallest t for which the network is a t-spanner is
called the stretch factor of the network. Computing
networks with small stretch factors is an active area of
research. For more on spanners, see e.g. [17, 8, 20].

An interesting dual problem is the following: given a
network interconnecting a set of n points in the plane,
what is the stretch factor of this network?

Surprisingly, the fastest known algorithm for comput-
ing the stretch factor of a Euclidean network is a naive
one that computes all-pairs shortest paths. If the net-
work is planar, all-pairs shortest paths can be computed
in O(n2) time [9], giving a quadratic time algorithm for
computing the stretch factor of the network.

For simpler types of graphs, faster algorithms exist.
For instance, it has been shown that the stretch fac-
tor of a path in the Euclidean plane can be found in
O(n log n) expected time and that the stretch factor of
trees and cycles can be found in O(n log2 n) expected
time [1, 15]. Using parametric search gives (rather com-
plicated) O(npolylog n) worst-case time algorithms for
these types of networks.

To our knowledge, the problem of efficiently comput-
ing the stretch factor of networks in weighted fixed ori-
entation metrics has not received any attention. Since
these metrics may be used to approximate other metrics
and due to their applications in VLSI design mentioned
above, we believe this problem to be an important one.

In this paper, we give an O(σn log2 n) worst-case

20th Canadian Conference on Computational Geometry, 2008

time algorithm for computing the stretch factor of an
n-vertex path embedded in the plane with a weighted
fixed orientation metric defined by σ ≥ 2 vectors. For
the L1-metric, we generalize the algorithm to d ≥ 3 di-
mensions. Here, the running time is O(n logd n). At the
cost of an extra log n-factor in running time, we show
how to compute the stretch factor of trees and cycles.
All algorithms have O(n) space requirement. Compared
to the complicated worst-case time algorithms for the
Euclidean metric, our algorithms are relatively simple
and should be easy to implement.

The organization of the paper is as follows. In Sec-
tion 2, we make basic definitions and observations and
introduce some notation. In Section 3, we consider the
problem of computing the stretch factor of paths in the
plane equipped with the L1-metric. We give a new way
of expressing the stretch factor which enables us to de-
velop an efficient algorithm for this problem. Using
simple linear transformations, we generalize the algo-
rithm to arbitrary weighted fixed orientation metrics in
Section 4 and in Section 5, we generalize it to higher
dimensions. Using ideas of [15], we show how to effi-
ciently compute the stretch factor of trees in Section 6.
In Section 7, we present an algorithm that computes
the stretch factor of cycles. In Section 8, we show how
to modify the algorithms to compute a pair of vertices
achieving the stretch factor of the path, tree, or cycle.
Finally, we make some concluding remarks in Section 9.

2 Basic Definitions and Observations

Let G be a graph embedded in a metric space with met-
ric d. For two vertices u and v in G, we define dG(u, v)
as the d-length of a shortest path P between u and v in
G, i.e.

dG(u, v) =
∑

(x,y)∈EP

d(x, y),

where EP is the set of edges of P . If u and v belong
to distinct connected components of G then we define
dG(u, v) = ∞.

For distinct vertices u and v in G, the detour δG(u, v)
between u and v in G is defined as dG(u, v)/d(u, v). The
stretch factor δG of G is the maximum detour over all
pairs of distinct vertices of G, i.e.

δG = max
u,v∈G,u6=v

δG(u, v).

Given two subgraphs G1 and G2 of G, we define

δG(G1, G2) = max
u∈G1,v∈G2,u6=v

δG(u, v).

Points and vectors in Rd, d ≥ 2, will be written in
boldface. Unless otherwise stated, subsets of Rd that
we consider are assumed to be closed.

v0

v1
v2

v3

v4

v5 v6

v7

Figure 1: A unit circle in a weighted fixed orientation
metric with σ = 4.

In all the following, let V denote a finite set of σ ≥ 2
vectors v0, . . . , vσ−1 all belonging to the upper half-
plane. The weighted fixed orientation metric dV is de-
fined as follows. Letting vσ+i = −vi for i = 0, . . . , σ−1,
the unit circle in dV is the boundary of the convex hull
of v0, . . . , v2σ−1, see Figure 1.

We assume that all vectors, regarded as points, are
on this boundary since any vectors that are not can be
discarded without changing the metric.

Furthermore, we assume that vectors are ordered
counter-clockwise starting with v0 and that v0, extends
horizontally to the right. The latter can always be
achieved by rotating the plane.

Drawing lines through the 2σ vectors partitions the
plane into 2σ wedge-shaped regions. For i = 0, . . . , 2σ−
1, the region Wi defined by vectors vi and v(i+1) mod 2σ

is called the ith V-cone. For a point p, we refer to p+Wi

as the ith V-cone of p.
Let p, q ∈ R2. It can be shown that if q belongs to

the ith V-cone of p then a shortest path from p to q in
the metric dV consists of line segments each of which is
parallel to either vi or v(i+1) mod 2σ.

For p ∈ R2, r ≥ 0, we define BV(p, r) as the closed
disc in dV with center p and radius r, that is,

BV(p, r) = {q ∈ R2|dV(p, q) ≤ r}.

The L1-metric in the plane is a special type of fixed
orientation metric, defined by vectors (1, 0) and (0, 1).
More generally, in Rd, the L1-distance between two
points p = (p1, . . . , pd) and q = (q1, . . . , qd) is

L1(p, q) =

d
∑

c=1

|qc − pc|.

For p ∈ Rd and r ≥ 0, we let B1(p, r) denote the
closed L1-ball in Rd with center p and radius r, i.e.

B1(p, r) = {q ∈ Rd|L1(p, q) ≤ r}.

3 Stretch Factor of Paths in the L1-Plane

In this section, we show how to compute the stretch
factor of an n-vertex path embedded in metric space
(R2, L1) in O(n log2 n) time and O(n) space.

CCCG 2008, Montréal, Québec, August 13–15, 2008

In the following, let P = p1 → p2 → · · · → pn be an
n-vertex path in the plane. We will make the simplifying
assumption that all vertices of P are distinct. For if they
were not, we would have δP = ∞ and checking whether
all vertices are distinct can be done in O(n log n) time.

In all the following, let N = {1, . . . , n}. For i ∈ N and
δ > 0, let Bi(δ) denote the L1-disc B1(pi, ri(δ)), where
radius ri(δ) = LP

1 (pi, pn)/δ. The following lemma re-
lates these discs to the stretch factor of P .

Lemma 1 With the above definitions, the stretch factor
of P is δP = inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ N, i 6= j}.

Proof. Let δ > 0. For any i, j ∈ N ,

LP
1 (pi, pj)

δ
=

|LP
1 (pi, pn) − LP

1 (pj , pn)|

δ
= |ri(δ) − rj(δ)|.

Hence,

δP < δ ⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > |ri(δ) − rj(δ)|

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > ri(δ) − rj(δ)

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) + rj(δ) > ri(δ)

⇔ ∀i, j ∈ N, i 6= j : Bj(δ) * Bi(δ).

�

The idea of our algorithm is to see how much the size
of the above defined L1-discs can be increased before
at least one of them includes another L1-disc. By
Lemma 1, this will then give us the stretch factor of
path P .

For each i ∈ N and for w = 1, 2, 3, 4, define Pw(i)
as the set of vertices of P \ {pi} belonging to the wth
quadrant of pi. Lemma 1 gives

δP = max
w=1,2,3,4

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)}.

Hence, δP is the maximum of four δ-values, one for
each value of w. In the following, let us therefore restrict
our attention to w = 1 and on computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)} (1)

(the other quadrants are handled in a similar way).

The following lemma gives a useful way of determin-
ing whether Bj(δ) is contained in Bi(δ) when pj belongs
to the first quadrant of pi.

Lemma 2 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, define ri(δ) and rj(δ) as the rightmost points
in Bi(δ) and Bj(δ), respectively (see Figure 2). Then

Bj(δ) ⊆ Bi(δ) ⇔ ri(δ) · (1, 1) ≥ rj(δ) · (1, 1).

(1, 1)

ri(δ)pi

pj

rj(δ)

Figure 2: The situation in Lemma 2.

Proof. The point rj(δ) is to the right of pj and belongs
to the first quadrant of pi, implying that L1(pi, rj(δ)) =
L1(pi, pj) + rj(δ). Since Bj(δ) ⊆ Bi(δ) if and only if
L1(pi, pj) + rj(δ) ≤ ri(δ), we have

Bj(δ) ⊆ Bi(δ) ⇔ L1(pi, rj(δ)) ≤ ri(δ)

⇔ rj(δ) ∈ Bi(δ)

⇔ (rj(δ) − ri(δ)) · (1, 1) ≤ 0,

since vector (1, 1) is normal to the part of the boundary
of Bi(δ) in the first quadrant of pi. �

Recall that, for any i ∈ N , ri(δ) = LP
1 (pi, pn)/δ.

Hence, the dot product ri(δ) · (1, 1) of Lemma 2 is an
affine function of 1/δ, i.e. on the form a(1/δ)+ b, where
a and b are constants. Denote this function by fi.

Associate with each pi a lower envelope function li of
1/δ, defined by

li(1/δ) = min{fj(1/δ)|pj ∈ P1(i)}.

Recall that our goal is to compute (1). The following
lemma relates this value to the intersection between fi

and li.

Lemma 3 There is at most one intersection point be-
tween fi and li on interval]0,∞[. If 1/δ′ is such a point
then

δ′ = inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)}.

If there is no intersection point then for any δ > 0 and
any pj ∈ P1(i), Bj(δ) * Bi(δ).

Proof. Figure 3 illustrates the lemma.
For any point p in the first quadrant of pi, the value

p · (1, 1) is minimized when p = pi. It follows that
fi(1/δ) < li(1/δ) for all sufficiently small 1/δ. Hence,
since the graph of li on]0,∞[is a chain of line segments
(and one halfline) whose slopes decrease as we move

20th Canadian Conference on Computational Geometry, 2008

(b)(a)

fi

fj

fk

1/δ
1/δ1 1/δ2

li

pi

pj
pk

(0, 0)

Figure 3: Illustration of Lemma 3. (a): L1-discs Bi(δ),
Bj(δ), and Bk(δ) for two values of δ: δ1 (bold bound-
aries) and δ2. (b): The corresponding functions fi, fj,
and fk. Lower envelope li is shown in bold. The dis-
tances in (a) between the dotted line and the black parts
of L1-discs correspond to values of functions fi, fj , and
fk at 1/δ1 and 1/δ2 in (b). Note that Bk(δ2) ⊆ Bi(δ2).
For all 1/δ < 1/δ2, Bj(δ) * Bi(δ) and Bk(δ) * Bi(δ).

from left to right, there is at most one intersection point
1/δ′ between fi and li on interval]0,∞[.

If intersection point 1/δ′ exists, the above shows that,
on interval]0,∞[, fi(1/δ) < li(1/δ′) if 1/δ < 1/δ′ and
fi(1/δ) > li(1/δ′) if 1/δ > 1/δ′. And if no intersection
point exists then fi is below li on interval]0,∞[.

Lemma 2 shows that Bj(δ) ⊆ Bi(δ) if and only if
fi(1/δ) ≥ fj(1/δ). Hence, Bj(δ) * Bi(δ) for all pj

in the first quadrant P1(i) of pi if and only fi(1/δ) <
li(1/δ). This shows the lemma. �

For each i ∈ N , let δi = 1/xi, where xi is the inter-
section point between fi and li. If no such point exists,
set δi = 0. Lemma 3 shows that (1) equals maxi∈N δi.

What remains therefore is the problem of computing
the intersection (if any) between fi and li for all i.

A naive algorithm for this problem computes, for each
i ∈ N , lower envelope li in O(n log n) time (this is possi-
ble by Lemma 4 of Section 3.2) and then the intersection
between fi and li in O(log n) time. The total running
time is O(n2 log n).

A slightly faster algorithm computes, for each i, the
intersection between fi and fj for each pj ∈ P1(i). The
leftmost of these is then the intersection between fi and
li. This gives a total running time of O(n2).

Note that, for any j ∈ N , the lower envelope of fj is
fj itself. Hence, the two algorithms above apply two
extremes of the following strategy: for each i ∈ N ,
compute the leftmost of the intersections between fi

and lower envelopes associated with subsets of points
in P1(i). The first algorithm considers, for each i ∈ N ,
only one subset (namely P1(i)) whereas the second al-
gorithm considers |P1(i)| subsets (each containing one
element of P1(i)).

In the next section, we present a faster algorithm
which applies a strategy somewhere in between these
two extremes.

3.1 The Algorithm

To simplify the description of the algorithm, we will
leave out some of the details and return to them in Sec-
tion 3.2 and Section 3.3, where we show how to obtain
O(n log2 n) running time and O(n) space requirement.

The algorithm stores vertices of P in a balanced bi-
nary search tree T of height Θ(log n) which is similar to
a 1-dimensional range tree. Let V be the set of vertices
of P . If V contains exactly one vertex, the root r of T
is a leaf containing this vertex. Otherwise, r contains
the median m of x-coordinates of vertices of V (in case
of ties, order the vertices on the y-axis) and the subtree
rooted at the left resp. right child of r is defined recur-
sively for the set of vertices of V with x-coordinates less
or equal to resp. greater than m.

Each node v of T corresponds to a subset Sv of ver-
tices of P , namely those vertices stored at the leaves
of the subtree of T rooted at v. We refer to these Sv-
subsets as canonical subsets.

Note that each vertex pi of P belongs to Θ(log n)
canonical subsets, namely those corresponding to ver-
tices visited on the path from the root of T to the leaf
containing pi.

In addition to a median, we associate with each node
of T a lower envelope of line segments. This lower enve-
lope is initially empty and will be dynamically updated
during the course of the algorithm.

After having constructed T , the algorithm makes a
pass over the vertices of P in order of descending y-
coordinate. In case of ties, vertices are visited from
right to left.

The following invariant will be maintained through-
out the course of the algorithm: for each vertex v of T ,
the lower envelope associated with v is the lower enve-
lope of fi-functions of vertices in Sv visited so far.

When a vertex pi of P is visited, the invariant is
maintained by adding fi to the Θ(log n) lower envelopes
associated with vertices on the path from the root of T
to the leaf containing pi.

When the algorithm visits a vertex pi, it needs to find
the intersection between fi and li. As we saw earlier,
explicitly computing li is too time-consuming.

Instead, we make use of our invariant which ensures
that lower envelopes of visited vertices of all canonical
subsets are given. The vertices in the first quadrant
of pi have all been visited and the set P1(i) of these
vertices is therefore the union of visited vertices of the
canonical subsets to the right of pi. So the intersection
between fi and li is the leftmost of the intersections be-
tween fi and the lower envelopes associated with these
canonical subsets, see Figure 4.

CCCG 2008, Montréal, Québec, August 13–15, 2008

leftmost intersection

fi

Figure 4: The intersection between fi and li is the left-
most of the intersections between fi and lower envelopes
associated with canonical subsets to the right of pi.

4

4

2

1

21

3

3 5 6

5 7

87

1

2

3

4

6
8

(a) (b)

7

5

6

Figure 5: (a) Eight points shown with x-coordinates
1, . . . , 8. The set of points with x-coordinate greater
than 3 is the union of two canonical subsets. (b) The two
canonical subsets are found by picking right children on
the path (shown in bold) from the root of the range tree
to the leaf with median 3. Picked children are coloured
black.

Since canonical subsets may overlap, not all canonical
subsets to the right of pi are needed. The idea is to pick
a small number in order to minimize running time.

The algorithm picks canonical subsets (or more pre-
cisely, nodes of T corresponding to canonical subsets)
as follows. Let vi be the leaf of T associated with pi.
For each vertex v on the path from the root r of T to
vi, the canonical subset associated with the right child
of v is picked unless this child itself is on the path from
r to vi, see Figure 5.

It is easy to see that the visited vertices in the union
of the picked canonical subsets are exactly the vertices
of P1(i). Since the height of T is Θ(log n), the number
of picked canonical subsets is O(log n).

One fine point: if there are vertices of P above pi

and with the same x-coordinate as pi, they may not
all belong to the picked canonical subsets even though
they belong to P1(i). We may ignore these however,
since they will be picked when second quadrants are
handled.

Intersections between fi and each of the lower en-
velopes of the picked canonical subsets are then com-
puted and the leftmost of these is picked as the inter-
section between fi and li.

From these intersections, the value (1) is obtained.
This is repeated for the other three quadrants, giving
the stretch factor of P .

3.2 Running Time

In the description of the algorithm above, we left out
some details. We now focus on them in order to analyze
the running time of the algorithm.

It is easy to see that tree T can be constructed top-
down in O(n log n) time. In the y-descending pass over
the vertices of P , maintaining our invariant requires
adding each fi-function to O(log n) lower envelopes.
Finding these lower envelopes takes O(log n) time by
a traversal from the root to a leaf of T using the medi-
ans at vertices to guide the search. The following lemma
shows that each insertion of a fi-function into a lower
envelopes takes O(log n) amortized time.

Lemma 4 Let l1, . . . , lk be k lines in the plane with pos-
itive slope and let L be the lower envelope of these lines
on interval]0,∞[. Constructing L incrementally can be
done in O(log k) amortized time per line. Furthermore,
L consists of at most k − 1 line segments and exactly
one halfline.

Proof. We may assume that lines are added to L in
the order l1, . . . , lk. For i = 1, . . . , k, let Li be the lower
envelope of l1, . . . , li.

For i > 1, suppose that Li−1 has been computed and
that the set Qi−1 of points on the graph of Li−1 where
line segments meet are ordered from left to right in a
red-black tree. Then computing the at most two inter-
sections between li and Li−1 can be done in O(log i)
time using two binary searches in the tree. When inter-
sections have been found (if any), Li is obtained from
Li−1 in O(qi−1 log qi−1) time, where qi−1 is the number
of points of Qi−1 that need to be removed to obtain Li,
i.e. the number of points of Qi−1 above li.

Since a point is removed at most once and each new
line increases the number of points defining the lower
envelope by at most two, it follows that the total time
spent on constructing the lower envelopes in the order
L1, . . . , Lk is O(k log k).

Since slopes of the line segments (and the halfline)
defining the graph of L decrease from left to right, each
of the k lines contribute with at most one line segment
to the graph of L. Exactly one of the lines contribute
with a halfline to the graph of L. Thus, the graph of L
consists of at most k − 1 line segments and exactly one
halfline. �

20th Canadian Conference on Computational Geometry, 2008

Next, we need to analyze the time it takes to com-
pute the intersection between fi and li for each i. This
involves picking O(log n) canonical subsets and comput-
ing the intersection between fi and the lower envelopes
associated with these subsets.

Clearly, the time it takes to find the canonical sub-
sets is bounded by the height of T which is Θ(log n).
Since each lower envelope l is a monotonically increas-
ing function and its graph consists of line segments (and
one halfline), computing the intersection between fi and
l can be done in O(log n) time by using a data struc-
ture like a red-black tree to represent the ordered list of
points of l where line segments meet.

It follows that our algorithm has O(n log2 n) running
time.

3.3 Improving Space Requirement

By Lemma 4, space requirement of our algorithm is
Θ(n log n) since this is the amount of space required to
store all lower envelopes. We now show how to improve
space requirement to linear without affecting running
time.

We modify the algorithm so that, instead of mak-
ing only one y-descending pass over the vertices of P ,
it makes h(T) passes (for each of the four quadrants),
where h(T) is the height of T .

In the kth pass, only lower envelopes at level k-nodes
of T are updated; all other nodes of T contain empty
lower envelopes. And only intersections between fi-
functions and lower envelopes at level k of T are com-
puted.

The modified algorithm is correct since it computes
exactly the same intersections as the old algorithm.

In each y-descending pass, the time spent on a vertex
pi of P is bounded by the time to add fi to a lower
envelope, and the time to compute the intersection be-
tween fi and a lower envelope (if any). Hence, the total
time spent in each pass is bounded by O(n log n). Since
there are h(T) = Θ(log n) passes, the total running time
is O(n log2 n).

The modified algorithm has O(n) space requirement
since T has O(n) nodes and since storing lower en-
velopes at one level of T requires O(n) space by
Lemma 4. This gives the first main result of the pa-
per.

Theorem 5 The stretch factor of an n-vertex path in
(R2, L1) can be computed in O(n log2 n) time and O(n)
space.

4 Weighted Fixed Orientation Metrics

Recall that dV denotes a weighted fixed orientation met-
ric defined by a set V of σ ≥ 2 vectors in the plane.

In this section, we generalize the algorithm of the pre-
ceding section to dV . The idea is simple: we apply a cer-
tain linear transformation to the vertices of P so that
ith V-cones are mapped to first quadrants and then use
the algorithm of Section 3. This is done for all V-cones,
giving an algorithm with O(σn log2 n) time and O(n)
space requirement.

First, we observe that Lemma 1 also applies to the
weighted fixed orientation metrics: simply define Bi(δ)
as BV(pi, ri(δ)), where ri(δ) = dP

V (pi, pn)/δ, and re-
place L1 by dV in the proof. This gives us

δP = max
1≤w≤2σ

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)},

where Pw(i) is the set of vertices of P \ {pi} belonging
to the wth V-cone of pi. We restrict our attention to
computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)} (2)

(the other V-cones are handled in a similar way).
Let v0 and v1 be the first and second vector of V

respectively. It is easy to find the linear transformation
T of the plane that maps v0 to (1, 0) and v1 to (0, 1).
This allows us to generalize Lemma 2.

Lemma 6 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, let ri(δ) and rj(δ) be the rightmost point in
Bi(δ) and Bj(δ) respectively. Then

Bj(δ) ⊆ Bi(δ) ⇔ T (ri(δ)) · (1, 1) ≥ T (rj(δ)) · (1, 1),

where T is defined as above.

Proof. Let v0 and v1 be defined as above. Applying
the ideas of the proof of Lemma 2, it follows easily that
Bj(δ) ⊆ Bi(δ) if and only if path rj(δ) → ri(δ) →
ri(δ)v1 does not make a right turn at ri(δ).

Since T maps the triangle with corners (0, 0), v0, and
v1 to the triangle with corners (0, 0), (1, 0), and (0, 1),
linearity of T implies that Bj(δ) ⊆ Bi(δ) if and only if
path T (rj(δ)) → T (ri(δ)) → T (ri(δ)v1) does not make
a right turn at T (ri(δ)).

Since the vector from T (ri(δ)) to T (ri(δ)v1) and vec-
tor (−1, 1) have the same orientation,

Bj(δ) ⊆ Bi(δ) ⇔ (T (rj(δ)) − T (ri(δ))) · ̂(−1, 1) ≥ 0

⇔ (T (rj(δ)) − T (ri(δ))) · (1, 1) ≤ 0.

�

By defining affine functions fi by fi(1/δ) = T (ri(δ)) ·
(1, 1) and li by

li(1/δ) = min{fj(1/δ)|pj ∈ P1(i)}

for i ∈ N , Lemma 6 and the results of Section 3 show
that the value (2) may be computed in O(n log2 n) time
using O(n) space. Since there are 2σ V-cones to con-
sider, we thus obtain the following generalization of
Theorem 5.

CCCG 2008, Montréal, Québec, August 13–15, 2008

Theorem 7 Let V be a set of σ ≥ 2 vectors defining
a weighted fixed orientation metric dV on R2. Then
the stretch factor of an n-vertex path in (R2, dV) can be
computed in O(σn log2 n) time and O(n) space.

5 Higher Dimensions

In this section, we generalize the algorithm of Section 3
to higher dimensions. In metric space (Rd, L1), d ≥ 3,
we will show how to compute the stretch factor of an
n-vertex path in O(n logd n) time using O(n) space.

In the following, assume that path P = p1 → p2 →
· · · → pn is embedded in (Rd, L1), where d ≥ 3. For
i ∈ N , let Bi(δ) and ri(δ) be defined as in Section 3.

First, we observe that Lemma 1 also holds in d di-
mensions. This gives us

δP = max
1≤w≤2d

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)},

where Pw(i) is the set of vertices of P \{pi} belonging to
the wth orthant1 of pi for some ordering of the orthants.
We assume that

O1(i) = {p ∈ Rd|p[c] ≥ pi[c]∀c}

is the first orthant of pi and we restrict our attention
to computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)} (3)

(the other orthants are handled in a similar way).
The following lemma generalizes Lemma 2 to higher

dimensions.

Lemma 8 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, let

ri(δ) = (pi[1] + ri(δ), pi[2], pi[3], . . . , pi[d])

rj(δ) = (pj [1] + rj(δ), pj [2], pj [3], . . . , pj [d])

and let e be the d-dimensional vector with d ones. Then

Bj(δ) ⊆ Bi(δ) ⇔ ri(δ) · e ≥ rj(δ) · e.

Proof. Similar to the proof of Lemma 2, we have

Bj(δ) ⊆ Bi(δ) ⇔ L1(pi, rj(δ)) ≤ ri(δ)

⇔ rj(δ) ∈ Bi(δ).

Let B1
i (δ) be the part of the boundary of Bi(δ) be-

longing to O1(i). Then B1
i (δ) contains the points

pi + ri(δ)ej , j = 1, . . . , d, where ej is the jth unit vec-
tor. Since ri(δ) ∈ Bi(δ), the hyperplane H containing
B1

i (δ) is defined by H = {p ∈ Rd|(p − ri(δ)) · e = 0}.

1An orthant is the higher dimensional equivalent of a quadrant.

A d-dimensional coordinate system has 2d orthants.

Since pi is an interior point of Bi(δ) and since (pi −
ri(δ)) · e < 0, it follows that, for any point p ∈ P1(i),
(p − ri(δ)) · e ≤ 0 if and only if p ∈ Bi(δ). Hence,

Bj(δ) ⊆ Bi(δ) ⇔ rj(δ) ∈ Bi(δ)

⇔ (rj(δ) − ri(δ)) · e ≤ 0.

�

For each i ∈ N , we define affine function fi by fi(1/δ) =
ri(δ) ·e, where ri and e are defined as in Lemma 8 and
we define lower envelope function li as in Section 3.

Since Lemma 3 holds with the fi- and li-functions
defined as above, it follows that the problem we are
facing is to compute the intersection between fi and
li (if any) for all i. We deal with this problem in the
next subsection where we generalize the algorithm of
Section 3.1 to d dimensions.

5.1 The Algorithm

In Section 3.1, we used a 1-dimensional range tree. To
compute the stretch factor of path P in d dimensions,
we now consider a (d − 1)-dimensional range tree.

First, a binary search tree T is constructed on the
first coordinate of the vertices of P as described in
Section 3.1. Each node v of T is associated with a
(d−2)-dimensional range tree for the vertices in canon-
ical subset Sv restricted to their last d − 1 coordinates.
This construction is repeated recursively for the (d−2)-
dimensional range tree. The recursion stops when we
reach a 1-dimensional range tree for coordinate d − 1.

We associate lower envelopes only with nodes of the
1-dimensional range trees. Note that range trees are not
defined for coordinate d. In this way, coordinates d − 1
and d correspond to coordinates x and y in Section 3.1
respectively.

The algorithm then visits vertices of P in order of
descending d-coordinate. In case of ties, vertices are
visited from right to left on axis d − 1.

Let pi be the vertex currently being visited. The algo-
rithm needs to update all lower envelopes corresponding
to canonical subsets in 1-dimensional range trees that
contain pi.

This is done as follows. All nodes of the (d − 1)-
dimensional range tree whose canonical subsets con-
tain pi are visited. Each of their associated (d − 2)-
dimensional range trees are visited recursively. When
the nodes of a 1-dimensional range tree are visited, the
function fi corresponding to pi is inserted into their
associated lower envelopes.

For vertex pi, the algorithm also needs to compute in-
tersections between fi and lower envelopes correspond-
ing to canonical subsets which are to the right of pi on
axes 1 to d − 1.

This is done as follows. Let r be the root and let
vi be the leaf containing pi in the (d − 1)-dimensional

20th Canadian Conference on Computational Geometry, 2008

range tree. For each node v on the path from r to vi

the (d − 2)-dimensional range tree associated with the
right child of v is visited recursively unless this child
itself is on the path from r to vi. When reaching a
1-dimensional range tree, intersections between fi and
lower envelopes are found as described in Section 3.1.

The correctness of the above algorithm follows by gen-
eralizing the arguments of Section 3.1.

5.2 Running Time

We will now show that the algorithm described above
has O(n logd n) running time. In our analysis, we as-
sume that dimension d ≥ 3 is a constant.

As shown in [3], a (d− 1)-dimensional range tree can
be constructed in O(n logd−2 n) time. For each vertex pi

of P , finding the lower envelopes in which fi is to be in-
serted takes O(logd−1 n) time. To see this, note that the
algorithm recurses on O(log n) (d−2)-dimensional range
trees associated with nodes of the (d − 1)-dimensional
range tree. For each of these range trees, the algorithm
recurses on O(log n) (d−3)-dimensional range trees and
so on. Thus, the total time to visit lower envelopes in
which fi is to be inserted is O(logd−1 n).

Since it takes O(log n) time to insert fi into a lower
envelope, the total time spent on inserting fi-functions
into lower envelopes is O(n logd n).

A similar argument shows that it takes O(n logd n)
time to compute intersections between fi-functions and
lower envelopes. Hence, the total running time of the
algorithm is O(n logd n).

5.3 Improving Space Requirement

The above algorithm does not have linear space re-
quirement. For instance, constructing the (d − 1)-
dimensional range tree using the algorithm of [3] re-
quires O(n logd−2 n) space. By generalizing the idea of
Section 3.3, we will modify our algorithm so that space
requirement is improved to O(n) without affecting run-
ning time.

The algorithm above makes one pass over the vertices
of P in order of descending d-coordinate. We modify it
so that it makes hd−1

d−1 passes, where hd−1 is the height
of the (d − 1)-dimensional range tree.

We enumerate the passes using a (d− 1)-dimensional
vector C. Each entry of C is a number between 1 and
hd−1. Note that hd−1 = Θ(log n) and that hd−1 is an
upper bound on the height of all other range trees (since
they all correspond to smaller sets of vertices of P).

Vector C can attain Θ(logd−1 n) values and each of
these values determine which parts of the range trees we
are interested in in the current pass. More specifically,
C[i] = k indicates that we are interested only in level k
of all (d− i)-dimensional range trees, i = 1, . . . , d−1. If
some (d− i)-dimensional range tree has height less than

C[i], it means that we are not interested in any levels
of that tree in the current pass.

Consider a given pass of the vertices of P . We con-
struct the (d − 1)-dimensional range tree as before ex-
cept that we only associate (d − 2)-dimensional range
trees with nodes at depth C[1]. For each of these
(d−2)-dimensional range trees, we only associate (d−3)-
dimensional range trees with nodes at depth C[2] and
so on. We refer to these range trees as restricted range
trees.

Since canonical subsets associated with nodes at the
same level of a range tree are disjoint, it follows eas-
ily that restricted range trees can be constructed in
O(n log n) time (since d is assumed to be a constant).
Thus, the total time spent on constructing restricted
range trees over all passes is O(n logd n).

In each pass, we only update those lower envelopes
allowed by C. The time spent on this for a given vertex
pi of P and a given pass is O(log n) since there is at
most one lower envelope in which fi is to be inserted
in the current pass and it takes O(log n) time to find it
and update it.

Similarly, computing the intersection between lower
envelopes and a given vertex of P in a given pass takes
O(log n) time. Thus, the total time spent in each pass is
O(n log n). Since there are Θ(logd−1 n) passes, the total
running time of the modified algorithm is O(n logd n),
that is, the same as the original algorithm.

As for space requirement, we observe that the space
required to represent restricted range trees is O(n) and
the space used for storing lower envelopes in a given pass
is O(n) since for a given vertex pi of P , fi is stored in
at most one lower envelope in the current pass. This
gives us the following generalization of Theorem 5.

Theorem 9 The stretch factor of an n-vertex path in
(Rd, L1) can be computed in O(n logd n) time and O(n)
space.

6 Stretch Factor of Trees

In this section, we generalize our algorithms for paths to
trees. We will show that the stretch factor of a tree with
n vertices can be computed in O(σn log3 n) time for the
weighted fixed orientation metrics and in O(n logd+1 n)
time in the space (Rd, L1) using O(n) space.

Let us focus on space (Rd, L1). The weighted fixed
orientation metrics are handled in a similar way.

Let T be a tree with n vertices p1, . . . , pn embedded
in (Rd, L1). We use the idea of [15] to compute the
stretch factor of T . First, T is partitioned into two
subtrees T1 and T2 sharing a single vertex p such that
each subtree contains between n/4 and 3n/4 vertices.
As shown in [15], this can be done in O(n) time. Then
the stretch factors of T1 and T2 are found recursively.

CCCG 2008, Montréal, Québec, August 13–15, 2008

What remains is to determine value δT (T1, T2) if it is
larger than either δT1

or δT2
.

Let I1 and I2 be indices of vertices in T1 and T2 re-
spectively and let I = I1 ∪ I2 be the indices of vertices
in T . Let m = maxi∈I2 L1(pi, p) and let δ > 0. For
each i ∈ I, let Bi(δ) be the L1-ball B1(pi, ri(δ)), where

ri(δ) =

{

(m + LT
1 (pi, p))/δ if i ∈ I1,

(m − LT
1 (pi, p))/δ if i ∈ I2.

Note that ri(δ) ≥ m for all i ∈ I1 and 0 ≤ ri(δ) ≤ m
for all i ∈ I2.

Lemma 10 With the above definitions, δT (T1, T2) =
inf{δ > 0|Bj(δ) * Bi(δ)∀(i, j) ∈ I1 × I2, i 6= j}.
Furthermore, for c = 1, 2, δT ≥ inf{δ > 0|Bj(δ) *
Bi(δ)∀i, j ∈ Ic, i 6= j}.

Proof. Let δ > 0. For any (i, j) ∈ I1 × I2, i 6= j,

LT
1 (pi, pj)

δ
=

LT
1 (pi, p) + LT

1 (pj , p)

δ
= ri(δ) − rj(δ).

Hence,

δT (T1, T2) < δ ⇔ ∀(i, j) ∈ I1 × I2, i 6= j :

L1(pi, pj) >
LT

1 (pi, pj)

δ
= ri(δ) − rj(δ)

⇔ ∀(i, j) ∈ I1 × I2, i 6= j : Bj(δ) * Bi(δ).

This shows the first part of the lemma.
To show the second part, let δ > 0 and i, j ∈ Ic,

i 6= j, be given. Since ri(δ) − rj(δ) = (|LT
1 (pi, p) −

LT
1 (pj , p)|)/δ,

Bj(δ) ⊆ Bi(δ) ⇒ L1(pi, pj) ≤
|LT

1 (pi, p) − LT
1 (pj , p)|

δ

≤
LT

1 (pi, pj)

δ
⇒ δ ≤ δT .

It follows that

δT ≥ sup{δ > 0|Bj(δ) ⊆ Bi(δ) for some i, j ∈ Ic, i 6= j}

= inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ Ic, i 6= j}.

�

Corollary 11 With the above definitions, δT ≥
inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ I, i 6= j} with equality if
δT = δT (T1, T2).

Proof. Lemma 10 implies that

δT ≥ δT (T1, T2)

= inf{δ > 0|Bj(δ) * Bi(δ)∀(i, j) ∈ I1 × I2, i 6= j}

and that, for c = 1, 2,

δT ≥ inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ Ic, i 6= j}.

�

Corollary 11 shows that if we pick the maximum of
δT (T1), δT (T2), and the value

inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ I, i 6= j}, (4)

then we obtain the stretch factor of T . Computing (4) is
done exactly as for paths in O(n logd n) time and O(n)
space.

It follows from the above that our algorithm has
O(log n) recursion levels and uses O(n logd n) time per
level. This gives the following result.

Theorem 12 The stretch factor of a tree with n
vertices embedded in (Rd, L1) can be computed in
O(n logd+1 n) time and O(n) space.

The above arguments also apply to the weighted fixed
orientation metrics, giving the following theorem.

Theorem 13 Let V be a set of σ ≥ 2 vectors defining
a weighted fixed orientation metric dV on R2. Then the
stretch factor of a tree with n vertices in (R2, dV) can
be computed in O(σn log3 n) time and O(n) space.

7 Stretch Factor of Cycles

We now show how to compute the stretch factor of an
n-vertex cycle in O(σn log3 n) time for the weighted
fixed orientation metrics and in O(n logd+1 n) time in
the space (Rd, L1) using O(n) space.

We will restrict our attention to the space (R2, L1)
since the weighted fixed orientation metrics are handled
in a similar way and since generalizing the results of this
section to higher dimensions follows from ideas similar
to those of Section 5. So let C be a an n-vertex cycle
p1 → p2 → · · · → pn → p1 embedded in (R2, L1).

The problem of computing the stretch factor of C is
harder than for paths since there are now two possible
paths between each pair of distinct vertices.

To handle this, it will prove useful to replace C by
a 2n-vertex path P = q1 → · · · → q2n, where qi =
qn+i = pi for i = 1, . . . , n.

For i = 1, . . . , 2n and for δ > 0, let Bi(δ) denote the
L1-disc B1(qi, ri(δ)), where ri(δ) = LP

1 (qi, q2n)/δ. Let
mC denote half the length of C.

With these definitions, we obtain the following result
which is similar to Lemma 1.

Lemma 14 With the above definitions, the stretch fac-
tor of C is δC = inf{δ > 0|Bj(δ) * Bi(δ)∀1 ≤ i, j ≤
2n, i 6= j, LP

1 (qi, qj) ≤ mC}.

Proof. The proof follows by applying the ideas of the
proof of Lemma 1 and from the observation that

δC = max{
LP

1 (qi, qj)

L1(qi, qj)

∣

∣1 ≤ i, j ≤ 2n, i 6= j,

LP
1 (qi, qj) ≤ mC}.

20th Canadian Conference on Computational Geometry, 2008

�

For 1 ≤ i ≤ 2n and for w = 1, 2, 3, 4, define Pw(i) as the
set of vertices of P \{pi} belonging to the wth quadrant
of qi. Lemma 14 gives

δC = max
w=1,2,3,4

max
1≤i≤2n

inf{δ > 0|Bj(δ) * Bi(δ)∀qj ∈ Pw(i),

LP
1 (qi, qj) ≤ mC}.

Hence, restricting our attention to first quadrants, the
problem of computing

max
1≤i≤2n

inf{δ > 0|Bj(δ) * Bi(δ)∀qj ∈ P1(i),

LP
1 (qi, qj) ≤ mC} (5)

is essentially the same as the problem of computing (1)
of Section 3 except for one thing: only pairs of indices
i, j, where LP

1 (qi, qj) ≤ mC , are allowed.
Note that Lemma 2 also applies in this section. Let

us therefore associate fi- and li-functions to each vertex
qi of P . We define fi as in Section 3 and define li by

li(1/δ) = min{fj(1/δ)|qj ∈ P1(i), L
P
1 (qi, qj) ≤ mC}.

For 1 ≤ i ≤ 2n, let δi = 1/xi, where xi is the inter-
section point between fi and li. If no such point exists,
set δi = 0. Then it follows easily from the results of
Section 3 that (5) equals max1≤i≤2n δi

What remains is to compute values xi for all i. In the
following, we describe an algorithm for this problem.

The algorithm stores vertices of P in a 1-dimensional
range tree T . Unlike in Section 3.1 however, vertices are
not ordered in ascending x but by ascending distance to
q1 in P . We will denote the leaves of T from left to
right by q1, . . . , q2n.

Let v be a node of T and let Tv be the subtree of T
rooted at v. Associated with v is a 1-dimensional range
tree for those vertices of P stored in the leaves of Tv.
This range tree is of the form described in Section 3.1
and will be updated in the same way.

Vertices of P are then considered in order of descend-
ing y (as in Section 3.1). Let qi be the current vertex.
Then range trees associated with nodes of T need to
be updated w.r.t. qi. These nodes are the nodes on
the path from the root of T to the leaf containing qi

since their associated range trees are exactly those that
contain qi.

What remains in the processing of qi is to compute
the intersection between fi and li. This involves com-
puting intersections between fi and lower envelopes in
range trees associated with nodes of T . However, only
range trees containing vertices all of distance at most
mC to qi in P should be considered.

Such range trees are picked as follows. First, O(log n)
subtrees of T are picked such that they cover all leaves

associated with vertices of P having distance at most
mC to pi. This is done using an algorithm similar to the
range query algorithm of Section 5.1 of [3] with query
range [LP

1 (p1, pi) − mC , LP
1 (p1, pi) + mC]. Then the

range trees picked are those associated with roots of
these subtrees.

The intersections between fi and lower envelopes in
the picked range trees are found as described in Sec-
tion 3.1. The leftmost of these intersections is then the
intersection xi between fi and li.

When all vertices of P have been considered in the
y-descending path of vertices, the value (5) is found as
max1≤i≤2n δi, where δi = 1/xi.

The running time of the above algorithm is
O(n log3 n). This follows easily from the results of Sec-
tion 3.2 and from the fact that the number of range
trees considered for each vertex of P is O(log n).

Linear space requirement is obtained by making
O(log2 n) y-descending passes instead of one pass. In
each pass, only range trees associated with nodes at a
certain depth of T are considered and only nodes at a
certain depth of each of the range trees associated with
nodes of T are considered. We will leave out the details
since they are similar to those of Section 3.3.

Generalizing the above to higher dimensions and to
weighted fixed orientation metrics gives the following
theorems.

Theorem 15 The stretch factor of a cycle with n
vertices embedded in (Rd, L1) can be computed in
O(n logd+1 n) time and O(n) space.

Theorem 16 Let V be a set of σ ≥ 2 vectors defining
a weighted fixed orientation metric dV on R2. Then the
stretch factor of a cycle with n vertices in (R2, dV) can
be computed in O(σn log3 n) time and O(n) space.

8 Finding a Vertex Pair Achieving the Stretch Fac-

tor

In the previous sections, we have considered the prob-
lem of computing the stretch factor of paths, trees, and
cycles. Suppose that we are also interested in actually
finding a pair of vertices for which the detour between
them equals the stretch factor of the graph.

The algorithms described above are easily modified
to find such a pair without affecting the time and space
bounds. To achieve this, we make the following small
change to the data structures defining lower envelope
functions as follows. Let l be a lower envelope function
considered during the course of the algorithm. Then we
associate with every line segment (and halfline) of l the
fj-function defining this segment.

Now, suppose the stretch factor of the graph has been
found. This value corresponds to a computed intersec-
tion between an fi-function and a lower envelope func-
tion for some i. The above modification then allows

CCCG 2008, Montréal, Québec, August 13–15, 2008

us to find, in constant time, a vertex pj such that the
stretch factor of the graph is achieved as the detour be-
tween pi and pj .

In fact, we can obtain a slightly stronger result which
we state in the following theorem.

Theorem 17 Without affecting time and space bounds,
all algorithms described above can be modified to com-
pute, for every vertex pi, a vertex pj maximizing the
detour between pi and pj .

9 Concluding Remarks

Given an n-vertex path P embedded in metric space
(Rd, L1), d ≥ 2, we showed how to compute the stretch
factor of P in O(n logd n) worst-case time. For a gen-
eral weighted fixed orientation metric in the plane, we
gave an O(σn log2 n) time algorithm, where σ ≥ 2 is
the number of fixed orientations. We generalized our
algorithms to trees and cycles at the cost of an extra
log n-factor in running time. All our algorithms have
O(n) space requirement.

An obvious question is whether our algorithms are
optimal with respect to running time. In the Euclidean
plane, an Ω(n log n) lower bound is known for paths
(and thus also for trees) and it is easily extended to the
weighted fixed orientation metrics (for fixed σ). Thus,
in the plane, there is a gap of log n for paths and log2 n
for trees between our time bounds and this lower bound.

It should be possible to modify the algorithms pre-
sented in [15] for computing the stretch factor of paths,
trees, and cycles in the Euclidean plane to handle the
rectilinear plane and possibly the more general weighted
fixed orientation metrics. This would give an O(n log n)
expected time algorithm for paths and an O(n log2 n)
expected time algorithm for trees and cycles. Is it pos-
sible to extend the ideas of this paper to handle other
classes of graphs?

Finally, we believe that it is possible to handle more
general fixed orientation metrics in higher dimensions
using the ideas of this paper.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman,
P. Morin, M. Sharir, and M. Soss. Computing the
Detour and Spanning Ratio of Paths, Trees and
Cycles in 2D and 3D. Discrete and Computational
Geometry, 39 (1): 17–37 (2008).

[2] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M.
Smid. Euclidean spanners: short, thin, and lanky.
Proc. 27th ACM STOC, 1995, pp. 489–498.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry - Algo-

rithms and Applications (2nd ed.). Springer-Verlag
Berlin, 1997, 2000.

[4] M. Brazil. Steiner Minimum Trees in Uniform Ori-
entation Metrics. In D.-Z. Du and X. Cheng, edi-
tor, Steiner Trees in Industries, pages 1–27, Kluwer
Academic Publishers, 2001.

[5] M. Brazil, D. A. Thomas, and J. F. Weng. Min-
imum Networks in Uniform Orientation Metrics.
SIAM Journal on Computing, 30: 1579–1593, 2000.

[6] M. Brazil, P. Winter, and M. Zachariasen. Flexi-
bility of Steiner Trees in Uniform Orientation Met-
rics. In Proceedings of the 15th International Sym-
posium on Algorithms and Computation (ISAAC),
Lecture Notes in Computer Science 3341, pp. 196–
208, 2004.

[7] M. Brazil and M. Zachariasen. Steiner Trees for
Fixed Orientation Metrics. Technical Report 06-11,
DIKU, Department of Computer Science, Univer-
sity of Copenhagen, 2006.

[8] D. Eppstein. Spanning trees and spanners. In J.-R.
Sack and J. Urrutia, editors, Handbook of Compu-
tational Geometry, pages 425–461, Elsevier Science
Publishers, Amsterdam, 2000.

[9] G. N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications. SIAM
J. Comput., 16 (1987), pp. 1004–1022.

[10] J. Gudmundsson, G. Narasimhan, and M. Smid.
Fast pruning of geometric spanners. STACS
2005:508–520.

[11] M. Hanan. On Steiner’s Problem with Rectilinear
Distance. SIAM Journal on Applied Mathematics,
14(2):255–265, 1966.

[12] J. Hershberger. Finding the upper envelope of n
line segments in O(n log n) time. Information Pro-
cessing Letters, Vol. 33, no. 4, 1989, pp. 169–174.

[13] F. K. Hwang. On Steiner Minimal Trees with Rec-
tilinear Distance. SIAM Journal on Applied Math-
ematics, 30:104–114, 1976.

[14] F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner Tree Problem. Annals of Discrete Math-
ematics 53, Elsevier Science Publishers, Nether-
lands, 1992

[15] S. Langerman, P. Morin, and M. Soss. Computing
the maximum detour and spanning ratio of planar
chains, trees and cycles. Proceedings of the 19th
International Symposium on Theoretical Aspects of
Computer Science (STACS ’02), Lecture Notes in
Computer Science, Vol. 2285, 2002, pp. 250–261.

20th Canadian Conference on Computational Geometry, 2008

[16] X. Y. Li and Y. Wang. Efficient construction of
low weighted bounded degree planar spanner. Int.
J. Comput. Geometry Appl. 14(1–2):69–84 (2004).

[17] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge University Press, 2007.

[18] B. K. Nielsen, P. Winter, and M. Zachariasen.
An Exact Algorithm for the Uniformly-Oriented
Steiner Tree Problem. In Proceedings of the 10th
European Symposium on Algorithms, Lecture Notes
in Computer Science, pp. 760–772, Springer, 2002.

[19] M. Sarrafzadeh and C. K. Wong. Hierarchical
Steiner Tree Construction in Uniform Orientations.
IEEE Transactions on Computer-Aided Design, 11:
1095–1103, 1992.

[20] M. Smid. Closest point problems in computational
geometry. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 877–
935, Elsevier Science Publishers, Amsterdam, 2000.

[21] P. Widmayer, Y. F. Wu, and C. K. Wong. On Some
Distance Problems in Fixed Orientations. SIAM
Journal on Computing, 16(4): 728–746, 1987.

[22] M. C. Yildiz and P. H. Madden. Preferred Direc-
tion Steiner Trees. In Proceedings of the 11th Great
Lakes Symposium on VLSI (GLSVLSI), pages 56–
61, 2001.

