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Abstract

The Focus of Attention (FOA) Problem is, given a set
of targets and a set of sensors in the plane, to track
the targets with ‘maximum possible accuracy’. The
accuracy is measured in terms of the angle subtended
by the sensor pairs at the assigned targets. In this
paper, we consider a scenario in which we are given
n targets on a line l and 2n sensors on a line m such
that l || m and the objective is to assign sensor-pairs to
the targets such that the minimum angle subtended at
the targets is maximized. We give a polynomial time
algorithm for a restricted version of this problem and
also study some properties of the optimal solution. To
our knowledge, no deterministic and exact polynomial
time algorithm is known for any non-trivial version of
the FOA problem when the accuracy is measured in
terms of the angles subtended by the sensor pairs.

Keywords: Target tracking, Focus of Attention prob-
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1 Introduction

The Focus of Attention problem is motivated from
the problem of tracking targets using sensor networks
which is mainly used for the purpose of surveillance
and monitoring tasks [3]. A limitation these sensors
have is that one sensor is not capable of tracking a
target. The sensors for example can be cameras and
they can be used to estimate the position of a target.
In practice, at least two such sensors are required to
estimate the position of a target and for many cases
like pan-tilt-zoom cameras one sensor cannot be used
to track more than one target. For range sensors, three
are required to localize a target [1]. In this paper,
we will only consider the case in which each target
can be tracked exactly by 2 cameras. To estimate the
quality of tracking a good metric is required. The angle
subtended by a camera pair at a target plays a crucial
role in tracking the targets [4]. To have minimum
uncertainty in the position of the targets the best
measure is to assign the cameras to the targets such
that the deviation of the subtented angle at each of
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the targets from 90 degrees is somewhat low. In other
words if all the subtended angles are 90 degrees then
the position of the targets is estimated very accurately.
It follows from this that for a good tracking of a
target, the angle subtended at the target should not be
very small. A natural way to make sure that the no
angle is very small will be to maximize the minimum
angle subtended at the targets. In [1] the cameras are
assumed to be on a line and the error associated with
an assignment of cameras ci and cj with target k is
Zk/lij where lij is the distance between the cameras
and Zk is the distance of the cameras from the line
containing the cameras. The objective is to find an
assignment that minimizes the total error. Intuitively,
if we fix Zk and the angle is small then the value of lij
will be small and error will be large. Hence this metric
tries to capture the angles via an approximation. So,
the natural question that arises is, can we work directly
with angles and design efficient algorithms that can
output an assignment that minimizes the maximum
deviation from 90 degrees? Unfortunately, this problem
has been shown to be intractable in [2]. Gfeller et al
[2] have recently shown that given a set of 2n cameras
and n targets in the plane, it is NP-complete to decide
whether there exists an assignment of cameras to track
targets such that each subtended angle is 90 degrees.
They also give approximation algorithms for maximiz-
ing the minimum angle and maximizing the sum of
angles when cameras are placed on a line. An extensive
survey and motivation on this problem is provided in [2].

To our knowledge, no deterministic and exact polyno-
mial time algorithm is known for any non-trivial version
of the FOA problem when the accuracy is measured
in terms of the angles subtended by the camera pairs.
In this paper we achieve such a result for a restricted
version of the problem.

2 Problem Definition

Consider n targets present on a line l1 and 2n cameras
on a line l2, where l1 is parallel to l2. Two cameras ci

and cj are said to subtend an angle θ at a target tk, if
∠citkcj is θ. In an assignment, a camera c can focus
on exactly one target and a target is focussed by exactly
two cameras. Moreover, each camera has to be used in
an assignment. Consider the following version of the
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focus of attention problem:
We have to find an assignment of cameras to targets
such that

• The minimum angle of all possible assignments is
maximized (Parallel-MAX-MIN Problem).

Let LHS denote the set of first n cameras and RHS
denote the set of last n cameras (ordered from left to
right).

3 Parallel-MAX-MIN Problem

We start off by proving a fundamental fact regarding
this optimization problem.

Lemma 1 There always exists an optimal solution O
of the Parallel-MAX-MIN problem such that in O there

are no two camera pairings ci, cj and ck, cl such that

i < j < k < l where i, j, k, l denote the index of the

cameras in the sorted order from left.

Proof Let camera pairs (ci, cj) and (k, l) be assigned
to tp and tq repectively in an optimal solution where
i < j < k < l. If tp is to the left of tq then we can
swap the assignment to get a new assignment with pair-
ings (ci, ck, tp) and (cj , cl, tq) and in this new assignment
the subtended angles for both the assignments increase,
hence the minimum angle in the solution does not de-
crease. Similarly, if tp is to the right of tq then the
pairings (ci, ck, tq) and (cj , cl, tp) will give us a solution
which is optimal as well.
The following can be easily derived from the previous
lemma.

Corollary 1 There exists an optimal solution in which

each camera from the set of first n cameras from left is

paired with a camera in the set of last n cameras.

Consider the following decision version of the prob-
lem:

Given an angle θ does there exist an assignment of

cameras and targets such that all the subtended angles

in the assignment are at least θ
It is clear that if we can solve this problem then we

can solve the MAX-MIN problem just by doing a binary
search on the n3 possible values of θ. If we choose a
camera pair, ci from LHS and cj from RHS then there
exists a validity interval I such that for every point p
in the interval the angle subtented by ci and cj at p is
at least θ. This interval is defined by the intersection of
a ball B with the line containing the cameras such that
the boundary of this ball is that circle passing through i
and j, for which the angle subtented by the chord ij at
its center is 2θ, if θ is acute and 2π − 2θ, if θ is obtuse.
So, the decision problem is equivalent to decide whether
there exists an assignment of cameras and targets such
that if target tk is assigned to camera pair (i, j) then it
lies inside the validity interval of (i, j).

3.1 Some Properties of the Intervals

We first introduce some notations on which the rest of
the paper is based. We label the first n cameras from
left to right as a1, a2, . . . an, the last n cameras from
left to right as bn, bn−1, . . . b1 and the n targets from
left to right as t1, t2, . . . tn. We denote the validity
interval corresponding to camera pairs (ai, bj) for angle
θ by Iθ(ai, bj). The words ‘before’ and ‘after’ will
corresponding to ordering from left to right. We can
now state the following lemmas which are easy to prove:

Lemma 2 If Iθ(ai, bj) and Iθ(ak, bl) are two intervals

with i ≤ k and j ≤ l, then Iθ(ai, bj) is nested within

Iθ(ak, bl).

Corollary 2 If Iθ(ai, bj) covers a target t then it is also

covered by Iθ(ak, bl) for all k ≤ i and l ≤ j.

3.2 Polynomial time Algorithm for a Restricted Case

In this section we describe the conditions that if
imposed on the problem instance can bring some
nice structure to the intervals defined by the cameras
which can be exploited to get a greedy strategy
work for the problem. We call this constraint Inter-
val Property which can be stated in the following way:

For every camera ai ∈ LHS, Iθ(ai, bn) should start

before the interval Iθ(ai+1, b1) and for every camera

bj ∈ RHS, the interval Iθ(an, bj) should end after the

interval Iθ(a1, bj+1).

Given an instance of the Parallel-MAX-MIN Prob-
lem, let Θ be the set of all angles θ such that there exist
ai ∈ LHS, bj ∈ RHS and target tp with ∠aitpbj = θ.
We impose the following constraint C in order to make
our algorithm work:
C: For each θ ∈ Θ the following should hold

1. All the targets are to the left of the right end-point

of the interval Iθ(an, bn).
2. Interval Property is satisfied for each angle θ ∈ Θ.

Next, we derive a geometric constraint under which In-
terval Property is satisfied for a given value of θ.

3.2.1 The Height Condition

Consider the defining circles Ci and Ci
′ corresponding

to the intervals Iθ(ai, bn) and Iθ(ai+1, b1). Let these
circles intersect at 2 points, the one which is above the
line of the cameras let it be called X . Let the distance
of this point from the line containing the cameras be
denoted by Hai

. In order to impose the above restric-
tion on the intervals we would like to have the distance
between the parallel lines to be less than Hai

. So, we
can calculate the critical height for each ai and bj and
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the height hc we choose should satisfy the condition
hc < min{ min

ai∈LHS
Hai

, min
bj∈RHS

Hbj
}. The following cal-

culations are done assuming θ < 90 ◦. These can be
analogously done for obtuse and right angle as well.
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Figure 1: The Height Condition

In figure 1, ∠AXC = ∠BXD = θ. Let the distance
between ai and bn is AC = d1, the distance between
ai+1 and b1 is BD = d3 and BC = d2. We use co-
ordinate geometry to find the value of Hai

. Let the

center of Ci be P and that of C
′

i be Q. It is clear
that the radius of Ci is r1 = (d1 + d2)cosecθ/2 and

that of C
′

i is r2 = (d2 + d3)cosecθ/2. If the rela-
tive positions of the points A, B, C, R, S is as shown
in the Figure 1 then the distance between the centres
of the two circles is RS = BC − SC − BR. Now
SC = BC − BS = d2 − (d2 + d3)/2 = (d2 − d3)/2
and BR = d2 − (d1 + d2)/2 = (d2 − d1)/2. Therefore
RS = (d1 + d3)/2. The equation of Ci is x2 + y2 = r2

1

(taking origin of coordinates at P ) and that of C
′

i is
(x − (d1 + d3)/2)2 + (y − (d3 − d1)cotθ/2)2 = r2

2 . If we
solve for the intersection of these circles we get

x2 + y2
− r2

1 = (x−

(d1 + d3)

2
)2 + (y −

(d3 − d1)cotθ

2
)2 − r2

2

r2

1−r2

2 =
(d1 + d2)

2

4
+x(d1+d3)+

(d3 − d1)
2cot2θ

4
+y(d3−d1)cotθ

Let,

Ai(θ) =
(r2

1 − r2

2 − (d1 + d3)
2/4 − (d3 − d1)

2cot2θ/4)

(d1 + d3)

Bi(θ) =
(d3 − d1)cotθ

(d3 + d1)

Then we have x = Ai(θ)+Bi(θ)y. Putting this value in
the equation x2 + y2 = r2

1 we get a quadratic equation
in y whose positive root we denote by ypos. Therefore,
Hai

= ypos + (d1 + d2)cotθ/2. So, in order to force the
aforementioned structure on the intervals we need to
select h ≤ hc.
Before going for the algorithm we state the following
lemmas which are quite easy to see and hence we omit
their proofs.

Lemma 3 Given that interval property is satisfied, if

interval Iθ(ai, bj) is nested by Iθ(ak, bl) then k ≤ i and

l ≤ j.

Lemma 4 Given that interval property is satified, if the

left end-point of Iθ(ai, bj) is to the left of left end-point

of Iθ(ak, bl) and right end-point of Iθ(ai, bj) is to the left

of right end-point of Iθ(ak, bl) then i < k and l < j.

The arrangment of the intervals satisfying interval prop-
erty (n = 3) for a particular instance is shown in Figure
2

Iθ(a1, b1)

Iθ(a1, b2)

Iθ(a2, b1)

Iθ(a2, b2)

Iθ(a3, b1)

Iθ(a3, b2)

Iθ(a1, b3)

Iθ(a2, b3)

Iθ(a3, b3)

Figure 2: Arrangement of Intervals satisfying Interval
Property

3.3 Algorithm

Now the question arises, how can this structure help
us in getting a greedy strategy work. We assume a
restriction on the where the cameras are placed which
is as follows. We suggest a greedy strategy that works
in this case. The strategy is as follows:

Consider the targets from left to right. For the ith

target from the left, let I1, I2, . . . Im be the intervals

in which it lies, assign it to the interval among these

which is ending earliest. If the interval is Iθ(ai, bj)
then remove all the intervals with left camera as ai and

right camera as bj.

It can easily be seen that this algorithm can be
implemented in O(n3 log n) time.

Proof of Correctness of Algorithm

Proof. Let the given settings of cameras and targets
have a solution as an assignment and let a valid
assignment be called a real assignment. There can
be many real assignments possible for an instance
of the decesion problem. In this proof we will fix
a real assignment (if there is any) and refer to that
allthrough. A triple (ai, bj, tp) is said to be a valid
pairing, if the target tp lies inside the interval defined
by camera pair ai, bj . Consider the leftmost target
t1, and let I1, I2, . . . Im be the intervals in which it
lies. Also assume, I1 = Iθ(ai, bj) be the interval that
is finishing earliest among these. Suppose, in the real
assignment, t1 be assigned to the interval I2 = (ak, bl).
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By case analysis we show that we can get a solution
from the real solution which has the triple (ai, bj , t1)
in the assignment. So, we can now remove the triple
(ai, bj, t1) from the real assignment and the rest of the
n− 1 targets and 2(n− 1) cameras will have a solution.
The base case (n = 2) can be verified easily. The
following cases need to be handled:

Case 1. j 6= n. If I1 is one of
Iθ(a1, b1), Iθ(a1, b2), . . . , Iθ(a1, bn−1), say Iθ(a1, bj),
j ≤ n − 1 then only intervals that can cover it are
Iθ(a1, b1), Iθ(a1, b2), . . . , Iθ(a1, bj). So, in the real
assignment it must be covered by Iθ(a1, b1) where
k ≤ j. If k = j we are done, else if Iθ(ai1 , bj) covers
some target tp then we can swap these to get new
pairings as (a1, bj, t1), (ai1 , bk, tp) and this will be a
valid assignment because of above conditions.

Case 2. j = n. The following subcases arise:
(a) k ≤ i. Let k < i, then because of the im-
posed constraint on the intervals, Iθ(ak, bl) will
start before Iθ(ai, bj) and since it is ending after
Iθ(ai, bj) it will be nesting the interval Iθ(ai, bj).
Hence, from lemma 3 we have j ≤ l. Now let
in the real assignment we have the following 3
assignments (ak, bl, t1), (ai, bj

′ , tp), (ai
′ , bj , tq). We

interchange the pairings to get 3 new pairings
(ai, bj, t1), (ak, bj

′ , tp), (ai
′ , bl, tq) which are valid as

Iθ(ai, bj′) is nested in Iθ(ak, bj′) and Iθ(ai′ , bj) is nested
in Iθ(ai′ , 1).

(b) k > i. If k > i, then starting point of
Iθ(ak, bl) will be to the right of that of Iθ(ai, bj)
and hence the intervals Iθ(ai, bj) and Iθ(ak, bl) sat-
isfy the conditions of lemma 4, which implies l <
j = n. Now assume that the real assignment
has the triples (ak, bl, t1), (ai, bj

′ , tp), (ai
′ , bj, tq). Now,

the new pairings we would like to propose are
(ai, bj, t1), (ak, bj

′ , tp), (ai
′ , bl, tq). In this case the

only problematic pair is (ai, bj
′ , tp), (ak, bj

′ , tp) because
Iθ(ak, bj′) is nested in Iθ(ai, bj′). If tp lies in Iθ(ak, bj′)
then we are done. If not, because of the constraint on
the position of cameras tp can lie only to the left of

Iθ(ak, bj′). Since j
′

< n = j, Iθ(ai, bj) will be nested

in Iθ(ai, bj′). Also l cannot be greater than j
′

because
if it is the case Iθ(ak, bl) will be nested in Iθ(ak, bj′)
and since t1 is the leftmost camera tp will lie to the
right of it and hence will be covered by Iθ(ak, bl) as
well, implying that it will be covered by Iθ(ai, bj′) as
well which is contrary to our assumption. Therefore,
l < j

′

. Figure 3 shows the relative position of the in-
tervals in this case. Hence in we can use the pairings
(ai, bj, t1), (ak, bl, tp), (ai

′ , bj
′ , tq) to get a valid new so-

lution. �

Therefore we can state the following theorem

Theorem 5 Under the constraint C, the Parallel-

MAX-MIN problem can be solved in O(n3 log2 n) time.

t1
Iθ(ai, bj′)

tp

Iθ(ai, bn)
Iθ(ak, bl)

Iθ(ak, bj′)

Figure 3: Case 3

Lemma 6 If all the targets are placed to the left of the

right end point of the interval Iθ(an, bn) and the instance

has a solution then there exists a valid assignment in

which the leftmost camera is assigned to the leftmost

target.

Proof. In long version of the paper �

Using the above lemma we can prove a result for the
case when targets can be placed arbitrarily on the line.
For the following lemma assume that the given instance
of the decision problem has a valid assignment.

Theorem 7 When the cameras are positioned such that

the interval property is satisfied then there exists a valid

assignment in which the leftmost camera is assigned to

the leftmost target or the rightmost camera is assigned

to the rightmost target.

Proof. In long version of the paper �

4 Conclusion

We study the Parallel-MAX-MIN version of the Focus
Of Attention Problem and give a polynomial time algo-
rithm assuming a constraint on the positioning of the
cameras and the targets.
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