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Draining a Polygon
–or–

Rolling a Ball out of a Polygon
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Abstract

We introduce the problem of draining water (or balls repre-

senting water drops) out of a punctured polygon (or a poly-

hedron) by rotating the shape. For 2D polygons, we obtain

combinatorial bounds on the number of holes needed, both

for arbitrary polygons and for special classes of polygons.

We detail an O(n2 log n) algorithm that finds the minimum

number of holes needed for a given polygon, and argue that

the complexity remains polynomial for polyhedra in 3D. We

make a start at characterizing the 1-drainable shapes, those

that only need one hole.

1 Introduction

Imagine a closed polyhedral container P partially filled
with water. How many surface point-holes are needed
to entirely drain it under the action of gentle rotations
of P? It may seem that one hole suffices, but we will
show that in fact sometimes Ω(n) holes are needed for
a polyhedron of n vertices. Our focus is on variants of
this problem in 2D, with a brief foray in Sec. 5 into 3D.
We address the relationship between our problem and
injection-filling of polyhedral molds [BvKT98] in Sec. 4.

A second physical model aids the intuition. Let P be
a 2D polygon containing a single small ball. Again the
question is: How many holes are needed to ensure that
the ball, regardless of its initial placement, will escape
to the exterior under gentle rotation of P? Here the ball
is akin to a single drop of water. We will favor the ball
analogy, without forgetting the water analogy.

Models. We consider two models, the (gentle) Rota-
tion and the Tilt models. In the first, P lies in a vertical
xy-plane, and gravity points in the −y direction. The
ball B sits initially at some convex vertex vi; vertices
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are labeled counterclockwise (ccw). Let us assume that
vi is a local minimum with respect to y, i.e., both vi−1

and vi+1 are above vi. Now we are permitted to ro-
tate P in the vertical plane (or equivalently, alter the
gravity vector). In the Rotation model, B does not
move from vi until one of the two adjacent edges, say
ei = vivi+1, turns infinitesimally beyond the horizontal,
at which time B rolls down ei and falls under the in-
fluence of gravity until it settles at some other convex
vertex vj . For example, in Fig. 1, B at v4 rolls ccw
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Figure 1: Polygon with several ball paths.

when v4v5 is horizontal, falls to edge v15v0, and comes
to rest at v0. Similarly, B at v10 rolls clockwise (cw) to
v6 after three falls. Note that all falls are parallel, and
(arbitrarily close to) orthogonal to the initiating edge
(in the Rotation model). After B falls to an edge, it
rolls to the endpoint on the obtuse side of its fall path.

The only difference in the Tilt model is that any grav-
ity vector may be selected. Only vectors between ei−1

and ei will initiate a departure of B from vi, i.e., the en-
tire wedge is available rather than just the two incident
edges. For example, in Fig. 1, B at v4 rolls to {v0, v3}
in the Rotation model, but can roll to {v0, v1, v2, v3}
in the Tilt model. The Rotation model more accu-
rately represents physical reality, for rain drops or for
balls. The Tilt model mimics various ball-rolling games
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(e.g., Labyrinth) that permit quickly “tilting” the poly-
gon/maze from the horizontal so that any departure vec-
tor from vi can be achieved. We emphasize that, aside
from this departure difference, the models are identical.
In particular, inertia is ignored, and rotation while the
ball is “in-flight” is forbidden (otherwise we could direct
B along any path).

There are two “degenerate” situations that can occur.
If B falls exactly orthogonal to an edge e, we arbitrarily
say it rolls to the cw endpoint of e. If B falls directly on
a vertex, both of whose edges angle down with respect
to gravity, we stipulate that it rolls to the cw side.

Questions. Given P , what is the minimum number of
point-holes needed to guarantee that any ball, regardless
of starting position, may eventually escape from P un-
der some sequence of rotations/tilts? Our main result
is that this number can be determined in O(n2 log n)
time. In terms of combinatorial bounds, we show that
some polygons require bn/6c and bn/7c holes (in the
Rotation/Tilt models respectively), but dn/4e holes al-
ways suffice. We make a start at characterizing the 1-
drainable polygons, those that only need one hole Fi-
nally we argue that the minimum number of holes can
be computed for a 3D polyhedron in polynomial time.
(Omitted proofs may be found in the full version.)

2 Traps

We start by exhibiting polygons that need Ω(n) holes
to drain. The basic idea is shown in Fig. 2(a) for the
Rotation model. We create traps with 5 vertices forming
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Figure 2: (a) Trap for Rotation model. (b) Trap for
Tilt model. (c,d) Details of traps.

an “arrow” shape, connected together around a convex
polygonal core so that 6 vertices are needed per trap.
A ball in v4 rolls to fall on edge v0v1, but because of
the slightly obtuse angle of incidence, rolls to v2; and

symmetrically, v2 leads to v4. So there is a cycle (defined
precisely in Sec. 3) that “traps” ball between {v2, v3, v4}
and isolates it from the other two traps. Therefore three
holes are required to drain this polygon. In the Tilt
model, Fig. 2(a) only needs one hole, because B could
roll directly from v3 through the v1−v5 “gap.” However,
the polygon in Fig. 2(b) requires 3 holes. Here the range
of effective gravity tilt vectors from v4 is so narrow that
the previous analysis holds. These examples establish
the necessity half of this theorem:

Theorem 1 (Combinatorial Bounds) In the Rota-
tion (resp. Tilt) model, bn/6c (resp. bn/7c) holes
are sometimes necessary to drain an n-vertex polygon.
dn/4e holes suffice to drain any polygon.
Although we believe that at least two reflex vertices
are needed in every cycle, we were unable to show that
they could not be shared between traps. We neverthe-
less conjecture that dn/5e holes suffice. (A variation
on Fig. 2(a) permits the formation of two traps with
n = 11.)

Proposition 2 bn/28c holes are sometimes necessary
to drain an n-vertex orthogonal polygon, and dn/8e
holes suffice.

3 The Pin-Ball Graph

Let G be a directed graph whose nodes are the convex
vertices of P , with vi connected to vj if B can roll in one
“move” from vi to vj . Here, a move is a complete path to
the local y-minimum vj , for some fixed orientation of P .
We conceptually label the arcs of G with the sequence
of vertices and edges along the path ρ(vi, vj). Thus, the
(v10, v6) arc in Fig. 1 is labeled (v9, e13, v14, e7, v7, e5).
We use GR and GT to distinguish the graphs for the
Rotation and Tilt models respectively, and G when the
distinction is irrelevant.

We gather together a number of basic properties of G
in the following lemma.

Lemma 3 (G Properties)

1. Every node of GR has out-degree 2; a node of GT

has out-degree at least 2 and at most O(n).

2. Both GR and GT have O(n) nodes (one per convex
vertex). GR has at most 2n arcs, while GT has
O(n2) arcs, and sometimes Ω(n2) arcs.

3. Each path label has length O(n) (in either model).

4. The total number of path labels on the arcs of GR

is O(n2), and sometimes Ω(n2).

5. The total number of labels in GT is O(n3), and
sometimes Ω(n3).

We will see below that GT can be constructed more
efficiently than what the cubic total label size in
Lemma 3(5) might indicate.
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Noncrossing Paths. A ball path corresponding to one
arc of G is a polygonal curve, monotone with respect
to gravity −→g . The path is composed of subsegments of
polygon edges, as well as fall segments, each of which is
parallel to −→g and incident to a reflex vertex. A directed
path ρ naturally divides P into a “left half” L = L(ρ) of
points left of the traveling direction, and a “right half”
R = R(ρ), where L and R are disjoint, and L∪R∪ρ = P .
Two ball paths ρ1 and ρ2 (properly) cross if ρ2 contains
points in both L(ρ1) and R(ρ1). For example, in Fig. 1,
ρ(v0, v6) crosses ρ(v10, v6). Let L = L(ρ) ∪ ρ be the
closure of L(ρ), and similarly define R.

Two paths can only cross at a reflex vertex (as do
ρ(v4, v0) and ρ(v6, v3) in Fig. 1) or on fall segments of
each (as do ρ(v0, v6) and ρ(v10, v6)).

Lemma 4 (Noncrossing) Two paths ρ1 and ρ2 from
the same source vertex v0 never properly cross (in either
model). See Fig. 3.
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Figure 3: Paths from the same source v0 do not cross.
Fall segments are dashed. L and R indicate polygon
“halves” left and right of the directed paths.

Lemma 5 (Label Intervals) In the Tilt model, a
particular label λ appears on the arcs of GT originating
at one particular vi within an interval [−→g1 ,−→g2 ] of gravity
directions.

Cycles and Strongly Connected Components. The
directed path from any vertex vi of G leads to a cycle in
G, because every node has at least two outgoing edges
by Lemma 3(1). Any maximal cycle in G has length
at least 3. Anything less would involve a pair (vi, vj)
connecting only to each other, which would contradict
Lemma 3(1). Note that any pair of convex vertices ad-
jacent on ∂P form a non-maximal cycle of length 2.

A cycle is a particular instance of a strongly connected
component (SCC) of G, a maximal subset C ⊂ G in
which each node has a directed path to all others.

Define a graph G∗ as follows. Let C1, C2, . . . be the
SCC’s of G. Contract each Ck to a node ck of G∗, while
otherwise maintaining the connectivity of G. Then G∗

is a DAG (because all cycles have been contracted).

Lemma 6 (Sinks) The minimum number m of holes
needed to drain P is the number of sinks of G∗.

Lemma 7 The locations of the minimum number m of
holes needed to drain P can be found in linear time in
the size |G| of G, once G has been constructed.

Construction of G. Our goal is to construct the un-
labeled G. Labels merely represent the paths that re-
alize each arc of G. An example given in the long ver-
sion seems to require Ω(n2) ray-shooting queries in the
Rotation model, and as we do not know how to avoid
this, our goal becomes an O(n2 log n) algorithm. This
is straightforward for GR, so we focus on GT , which by
Lemma 3(5) is potentially cubic.

We first preprocess P for efficient ray-shooting
queries, using fractional cascading to support ray shoot-
ing in a polygonal chain. This takes O(n log n) pre-
processing time and supports O(log n) time per query
ray [CEG+94]. Next we construct the visibility polygon
from each vertex of in overall O(n2) time [JS87]. From
these visibility polygons, for each vi we construct a grav-
ity diagram Di. This partitions all gravity vectors −→g
into angular intervals labeled with the next vertex that
B will roll to from vi with tilt −→g . For example, Fig. 4(a)
shows the gravity diagram for v4 in Fig. 1. Note that
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Figure 4: (a) Gravity diagram for v4 in Fig. 1. (b) Grav-
ity diagrams for paths ρ0 and ρ1.

Di only records the next vertex encountered, not the
ultimate destination. We maintain each diagram in a
structure that permits any −→g to be located in O(log n)
time.

We now argue that we can construct all paths with
source vi, and therefore all arcs of GT leaving vi, in
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O(n log n) time. Compute the path ρ0 for the cw ex-
treme gravity vector −→g0 that leaves vi (perpendicular
to vivi+1). This uses O(n) ray-shooting queries for
the fall segments of ρ0, totaling O(n log n) time. Let
ρ0 = (vi, vi1 , vi2 , . . . , vj). During its construction, we
locate −→g0 within each diagram Dik

. Now we find the
minimum angle between −→g0 and the next ccw event over
all diagrams. This can be done in O(log n) time us-
ing a priority queue. Call the next event −→g1 , and sup-
pose it occurs at vik

in diagram Dik
. We now construct

the path ρ1 from vik
onward, until it terminates at a

new vertex, or rejoins ρ0 (recall from Fig. 3 that paths
might rejoin, i.e., the suffixes from vik

are not necessar-
ily disjoint). In our “update” from ρ0 to ρ1, let V0 be
the set of vertices lost from ρ0, and V1 those gained
in ρ1. The priority queue of minima is updated by
deleting those for V0 and inserting those for V1. The
angular sweep about vi continues in the same manner
until the full gravity vector range about vi is exhausted.
Fig. 4(b) illustrates one step of this process, where vi1

determines the transition event between g0 and g1, at
which point the path changes from ρ0 = (vi, vi1 , vi2 , vj)
to ρ1 = (vi, vi1 , v

′
i2

, vk).
By Lemma 5, each diagram abandoned in this sweep

is never revisited. Thus the number of invocations of
the minimum operation to find the next event is O(n),
or O(n log n) overall. Repeating for each vi we obtain:

Lemma 8 G can be constructed in O(n2 log n) time.

Theorem 9 The locations of the minimum number of
holes needed to drain P can be found in O(n2 log n).

We leave it as a claim that GR can be constructed
(and the holes located) in O(n log n) time for orthog-
onal polygons.

4 1-Drainable Shapes

Define a k-drainable polygon as one that can be drained
with k holes but not with k−1 holes. For example,
Fig. 1 is 1-drainable with a hole at v6. We make a
start here at exploring the 1-drainable shapes under
each model. Note that these shapes do depend on the
model: Fig. 2(a) is 1-drainable in the Tilt model but
3-drainable in the Rotation model.

Our definition of k-drainable polygons is inspired by
the k-fillable polygons of [BvKT98], those mold shapes
that can be filled with liquid metal poured into k holes.
Despite the apparent inverse relationship between filling
and draining, the two concepts are rather different. In
particular, there are star-shaped polygons k-drainable
in the rotation model (Proposition 13 below), but The-
orem 7.2 of [BvKT98] shows that these are all “2-fillable
with re-orientation.” Also, there are 1-drainable poly-
gons that are k-fillable (with or without reorientation).

Proposition 10 Monotone polygons are 1-drainable.

Let the ccw roll from vi be the roll toward vi+1 in the
Rotation model, or equivalently, the tilt according to −→g
perpendicular to vivi+1 in the Tilt model.

Lemma 11 (Kernel) Let P be star-shaped with kernel
K. Then for each arc (vi, vj) ∈ G corresponding to the
ccw roll path ρ from vi, K is in L(ρ), i.e., K is on or
to the left of ρ.
A fan is a star-shaped polygon whose kernel includes a
convex vertex.

Proposition 12 Fans are 1-drainable.
Proposition 12 cannot be extended to star-shaped poly-
gons in the Rotation model:

Proposition 13 For any k > 1, there is a k-drainable
star-shaped n-gon in the Rotation model, with k = Ω(n).

5 3D

Define the Tilt model for 3D polyhedra to permit de-
parture from a vertex v at a direction vector lying in
any of the faces of P incident to v. We do not see how
to mimic the efficient construction of G previously de-
scribed, so we content ourselves with showing (in the
full version) that it can be accomplished in polynomial
time: O(n7 log n).

6 Open Problems

1. Can the upper bound of dn/4e in Theorem 1 be
improved?

2. Are star-shaped polygons 1-drainable in the Tilt
model? More generally, characterize 1-drainable
polygons.

3. Suppose m balls are present in P at the start, and
P is k-drainable. What is the computational com-
plexity of finding an optimal schedule of rotations,
say, in terms of the total absolute angle turn, or in
terms of the number of angular reversals?
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