
CCCG 2008, Montréal, Québec, August 13–15, 2008

Partial Matching of Planar Polygons Under Translation and Rotation

Eric C. McCreath∗

Abstract

Curve matching is an important computational task for
domains such as: reconstruction of archaeological frag-
ments, forensics investigation, measuring melodic simi-
larity, and model-based object recognition. There are a
variety of measures and algorithmic approaches used to
address the curve matching problem including: shape
signature strings with substring matching, geometric
hashing, and Hausdorff distance approaches. In this pa-
per we propose an approach that uses a turning function
representation of the shape and also uses a L2 measure
for comparing matches. The novel algorithm presented
finds the best match along a fixed length portion of two
polygon’s perimeters where the polygons may be arbi-
trarily translated and rotated. The algorithm’s time
complexity is O(mn(n + m)) where n and m are the
numbers of vertices in the perimeters being matched.
The utility of the algorithm is demonstrated in the re-
construction of a small jigsaw puzzle.

1 Introduction

Reconstruction of a broken object is an important yet
time consuming task for a number of disciplines in-
cluding forensics and archeology. Digitally automat-
ing or semi-automating this process is beneficial. Jig-
saw puzzles, which are a simplistic form of this recon-
struction problem, have been investigated by a num-
ber of researchers over the last 50 years. Freeman and
Garder[6] produced what is generally considered the
first of these investigations. They matched portions
of a piece by comparing features extracted from the
shape of those portions. There has since been a variety
of other approaches in solving this problem including:
curve matching combinatorial optimization[11], use of
critical points[10, 8, 7], shape and image matching[12],
and even an attempt to reconstruct the puzzle via a
robot [4]. In many respects the jigsaw puzzle problem
is a much simpler problem than the more general recon-
struction of a broken fragment due to the well defined
constraints on the shape of jigsaw puzzles, though it is
not a simple problem to solve.

This paper proposes a novel algorithm which takes
two polygons and matches a fixed length portion of the

∗Department of Computer Science, The Australian National

University, ACT 0200 Australia ericm@cs.anu.edu.au

polygons perimeter. The polygons may be arbitrarily
translated and rotated, however they are not scaled.
This algorithm finds the match which minimizes the L2

distance of the turning functions of the two portions
of the polygons. The novelty of the approach taken in
this paper is how a fixed length portion of two unscaled
polygons can be matched. Such matching is useful for
reconstruction when fragments are matched against the
complement of other fragments.

Arkin et al. [3] proposed using the L2 distance be-
tween turning functions of polygons to compare two
shapes. Their algorithm works in O(mn log mn) time
where n and m are the numbers of vertices in the poly-
gons. The Arkin et al. approach is different to the
contribution made in this paper as they find matches
between two entire polygons which have both been
rescaled to have a perimeter length of 1.

Cohen and Guibas [5] developed an algorithm that
matches a polyline by translation, rotation, and scaling
to a part of another polyline. Their algorithm works in
O(m2n2) time where m and n are the numbers of edges
within the polylines. The approach taken in this paper
is different to the Cohen and Guibas approach, as Cohen
and Guibas finds the shifting and stretching parameters
that minimize a combination of L2 distance of the turn-
ing functions and match length. Whereas, in this paper,
the approach presented finds the two shifting parame-
ters which determine where the matching portions of
the polygons will start.

Aloupis et al. [1, 2] developed an approach that
finds the minimum area between two given orthogonal
melodies with periods of 2π. Their approach runs in
O(n2 log n) time and can be used for matching short
patterns in a database of music. This is the same prob-
lem of matching polygons when a turning function rep-
resentation is used. The problem Aloupis et al. ad-
dress is different to the problem this paper addresses
as Aloupis et al. use an L1 distance and they focus
on comparing either two cyclic melodies (parallels with
Arkin et al.) or a melody which matches a portion of an-
other melody. Whereas, this paper uses the L2 distance
and focuses on fixed length portions as these portions
could occur anywhere along the x-axis of the two turn-
ing functions. If the approach presented in this paper
was applied to the music domain, then the approach
could be used to find common melodies of fixed length
which occur anywhere within two items of music.

20th Canadian Conference on Computational Geometry, 2008

2 Problem Setup

Let A and B denote two planar polygons with n and
m vertices respectively. The vertices of A are points
in the xy-plane denoted {ȧ0, ȧ1, . . . , ȧn−1}. Vertex ȧi is
connected to vertex ȧi+1 by an edge. Also vertex ȧn−1

is connected to vertex ȧ0 by an edge. To simplify the
wrapping of the polygon we also define ȧi+n = ȧi, ∀i ≥
0. Let āi denote the vector from ȧi to ȧi+1, this vector
provides the direction and length of edge i and may
be calculated by āi = ȧi+1 − ȧi. So |āi| is the length
of edge i. Let ai denote the distance from ȧ0 to ȧi

following the perimeter of the polygon. More formally
ai =

∑i−1
j=0 |āj |. Note that a0 = 0 and an is the length

of the perimeter. Let the turning function tA(d) be the
accumulative turning angle at distance d around the
perimeter of A from ȧ0. ḃi, b̄i, bi, and tB(d) are defined
for polygon B in a similar way to that of polygon A.

Figure 1 shows an example of a simple polygon and
its turning function representation. We wish to deter-
mine how well portions of one polygon will fit together
with that of another. The turning function provides an
efficient way of determining if polylines closely follow
each other[3]. This efficiency is due to the translation
invariant nature of the representation. Also, finding the
best rotation of one polygon onto the other can be an-
alytically determined without explicitly searching this
dimension.

An L2 distance is used over a fixed length l of the
perimeter to determine the error in matching a partic-
ular configuration. Given this fixed perimeter length
we must find the minimum error over a 3 dimensional
space, where the dimensions are: the starting location
sA of the matching on the perimeter of polygon A; the
starting location sB on polygon B; and the angle of ro-
tation θ. The start location sA (and sB) is the distance
around the perimeter from a0 (and b0). Thus the error
we wish to minimize over sA, sB , and θ is:

error(sA, sB , θ) =

∫ l

0

(tA(sA + x) − tB(sB + x) + θ)2dx

3 Searching

To search for the values that minimize the error, we first
show how to calculate the θ that minimizes the error
for a given sA and sB . We denote this minimum angle
with the function θ∗(sA, sB). This calculation is done
in the same way as [3]. We set the partial derivative of
error(sA, sB , θ) to zero finding the only critical point at:

θ =
−

∫ l

0
tA(sA + x) − tB(sB + x)dx

l

A second derivative test reveals that this is the mini-
mum. Thus we set:

θ∗(sA, sB) =
−

∫ l

0
tA(sA + x) − tB(sB + x)dx

l

This enables us to reduce the degrees of freedom for
the search down to 2 as:

min {error(sA, sB , θ)} = min {error(sA, sB , θ∗(sA, sB))}

Let:

error∗(sA, sB) = error(sA, sB , θ∗(sA, sB))

=
∫ l

0
(tA(sA + x) − tB(sB + x)

−
R

l

0
tA(sA+x)−tB(sB+x)dx

l
)2dx

=
∫ l

0
(tA(sA + x) − tB(sB + x))2dx−

(
R

l

0
tA(sA+x)−tB(sB+x)dx)2

l

= II(sA, sB) − 1
l
I(sA, sB)2

where

I(sA, sB) =

∫ l

0

tA(sA + x) − tB(sB + x)dx

and

II(sA, sB) =

∫ l

0

(tA(sA + x) − tB(sB + x))2dx

Since both sA and sB are continuous values it is im-
possible to explicitly search all possibilities. However,
this search space may be partitioned by lines into a num-
ber of regions. The lines are either when vertices of the
two polygons line up or when the start or end of the
matching region lines up with a vertice on a polygon.
The minimum of the error function over each region can
be found at the crossing points on the border of the re-
gion. Hence, the minimum over the entire search space
can be found by considering all the points at which these
lines intersect.

As the functions tA and tB are both piecewise con-
stant, both tA(sA + x)− tB(sB + x) and (tA(sA + x)−
tB(sB + x))2 will also be piecewise constant functions
in the variable x. Hence to calculate I(sA, sB) and
II(sA, aB) one can simply sum the length of the con-
tribution of each of the constant sections multiplied by
the value for that section. We let Xij(sA, sB) be the
length of the contribution made by the polygon sides āi

and b̄j . This can be calculated via:

Xij(sA, sB) = |(max{0, ai − sA, bj − sB},
min{l, ai+1 − sA, bj+1 − sB})|

where |(x, y)| = max{y − x, 0}. We also let θij =
tA(ai) − tB(bj). So we now have:

I(sA, sB) =
∑

ij

Xij(sA, sB)θij

CCCG 2008, Montréal, Québec, August 13–15, 2008

0a0

a1

a6

a5 a2

a3

a4

a7

a1 a2 a3 a4 a5 a6 a7 a8

π/4

3π/4

5π/4

7π/4

9π/4

Turning Angle

Perimeter Distance

a0

a) b)

.

..

.
.

.

.

.

Figure 1: a) A simple polygon. b) The turning function for the polygon shown in a).

and

II(sA, sB) =
∑

ij

Xij(sA, sB)(θ2
ij)

The Xij can be rewritten as a linear function in sA

and sB for 10 different regions of the sA, sB plane. This
can be done by considering: the three different possi-
ble maximums with the three possible minimums; along
with the no overlapping possibility.

Xij(sA, sB) =

l if 0 ≥ ai − sA∧
0 ≥ bj − sB∧
l ≤ ai+1 − sA∧
l ≤ bj+1 − sB

ai+1 − sA if 0 ≥ ai − sA∧
0 ≥ bj − sB∧
ai+1 − sA ≤ bj+1 − sB∧
ai+1 − sA ≤ l∧
ai+1 − sA ≥ 0

...
...

0 otherwise

The sA,sB plane can be divide up into regions via the
following lines: 0 = ai − sA, 0 = bj − sB , ai − sA =
bj − sB , l = ai − sA, and l = bj − sB . Within each
of these regions Xij will be linear with respect to sA

and sB. Moreover, within each of these regions both
I(sA, sB) and II(sA, sB) will be linear with respect to
sA and sB . For each region r, let c1, c2, c3, c4, c5, and
c6, be the constants such that:

Ir(sA, sB) = c1sA + c2sB + c3

and

IIr(sA, sB) = c4sA + c5sB + c6

then

error∗r(sA, sB) = IIr(sA, sB) − 1
l
Ir(sA, sB)2

= −
c2

1

l
s2

A −
c2

2

l
s2

B − 2c1c2

l
sAsB+

(c4 −
2c1c3

l
)sA + (c5 −

2c2c3

l
)sB+

c6 −
c2

3

l

It is simple to confirm that the minimum of this function
will be at one of the vertices of the region. Therefore,
to find the minimum of this function over the entire sA,
sB plane, one may simply find the minimum over all the
points at which the lines cross. Fortunately, we do not
need to recalculate I and II for every point, as we can
move from one crossing point to a neighboring crossing
point and evaluate the new error from information from
the previous point in a constant amount of time.

4 The Algorithm

The algorithm works by calculating the error on each
of the crossing points between the lines over the entire
plane. There are at most1 nm sloping lines ai − sA =
bj − sB . These are all parallel with each other and have
a gradient of -1. Also, there are at most 2n horizontal
lines 0 = ai − sA or l = ai − sA. Finally, there are
at most 2m vertical lines 0 = bj − sB or l = bj − sB .
The sloping lines will intersect with both the vertical
and horizontal lines. To calculate the minimum over all
these intersecting points we consider each of the slop-
ing lines in turn. We begin at any point on a line and
calculate I(sA, sB) and II(sA, sB). This may be ac-
complished in n+m steps by moving across the turning
functions of A and B summing contributions to the in-
tegrals. Once this is calculated it is possible to slide
along this sloping line to the next point where a ver-
tical or horizontal line intersects with it. We denote
this new point (s′A, s′B). I(s′A, s′B) and II(s′A, s′B) can
be calculated using I(sA, sB) and II(sA, sB) and sub-
tracting the contributions that no longer overlap and
adding the new overlapping contributions. This may be
achieved in constant time. Therefore, finding the min-
imum over all points which intersect with the sloping
lines is O(mn(m + n)). The other points that must be
considered occur when horizontal and vertical lines in-
tersect. There are at most 4nm of these. The error for

1There could be fewer lines if a number of combinations of i

and j produce the same line.

20th Canadian Conference on Computational Geometry, 2008

each of these can be calculated separately in at most
n + m steps. Hence, the complexity of calculating the
points of intersection for both the horizontal and verti-
cal lines is O(mn(n+m)). Moreover, the time complex-
ity of calculating the configuration that minimizes error
is O(mn(n + m)). Note that the space required for this
algorithm is only O(n + m).

5 Discussion

The matching algorithm was implemented and used
within a puzzle solving program to demonstrate the util-
ity of the matching algorithm. The data sets consisted
of a simple 20 piece puzzle. The puzzle solving pro-
gram used a greedy approach. The minimum error is
found between each fragment and the complement of
another fragment using the algorithm presented in this
paper. The fragments with the minimum error are re-
moved from the set of fragments, then the fragments
are joined forming a new fragment which is then incor-
porated back into the set of fragments. This process is
repeated until all the fragments are joined into a single
fragment. Clearly, this greedy approach is not guaran-
teed to produce either an optimal or correct solution.
However, in the puzzle tested the greedy approach pro-
duced a correct result. Note that, the fixed matching
length was manually tune for this particular puzzle.

A larger class of shapes can be more compactly and
accurately represented by including circular arcs as
edges. In such cases the turning function is piecewise
linear. Arkin et al. [3] considered this for matching
shapes. In a similar way the algorithm presented in this
paper could be extended to include circular arcs. Such
a representation would clearly perform well for shapes
like the puzzle fragments.

In terms of improving the performance of the algo-
rithm it would be possible to use an approach similar to
that of Latecki et al. [9] where polygons undergo a curve
evolution to approximate a polygon with fewer edges.
This approximation would be within some known error
of the turning function. This could be used to prune
large sections of the search, as bounds could be found for
particular regions of the search space. The optimal con-
figuration could then be found on this restricted search
space. Hence, the overall algorithm would produce the
optimal result more quickly. In general it is unlikely
that such a modification would improve the worst case
complexity of the algorithm, however, it could improve
the expected running time of the algorithm.

References

[1] G. Aloupis, T. Fevens, S. Langerman, T. Matsui,
A. Mesa, Y. Nuñez, D. Rappaport, and G. Tous-
saint. Algorithms for computing geometric measures
of melodic similarity. Comput. Music J., 30(3):67–76,
2006.

[2] G. Aloupis, T. Fevens, S. Langerman, T. Matsui,
A. Mesa, D. Rappaport, and G. Toussaint. Comput-
ing the similarity of two melodies. In Proceedings of the
15th Canadian Conference on Computational Geometry
(CCCG’03), pages 81–84, 2003.

[3] E. M. Arkin, P. Chew, D. P. Huttenlocher, K. Kedem,
and J. S. Mitchell. An efficiently computable metric for
comparing polygonal shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(3):209–
216, March 1991.

[4] G. Burdea and H. Wolfson. Solving jigsaw puzzles by a
robot. IEEE Transactions on Robotics and Automation,
5(6):752–764, Dec 1989.

[5] S. D. Cohen and L. J. Guibas. Partial matching of
planar polylines under similarity transformations. In
SODA: ACM-SIAM Symposium on Discrete Algorithms
(A Conference on Theoretical and Experimental Anal-
ysis of Discrete Algorithms), 1997.

[6] H. Freeman and L. Garder. Apictorial jigsaw puzzles:
The computer solution of a problem in pattern recog-
nition. IEEE Transactions on Electronic Computers,
EC-13(2):118–127, April 1964.

[7] D. Goldberg, C. Malon, and M. Bern. A global ap-
proach to automatic solution of jigsaw puzzles. In SCG
’02: Proceedings of the eighteenth annual symposium on
Computational geometry, pages 82–87, New York, NY,
USA, 2002. ACM Press.

[8] D. Kosiba, P. Devaux, S. Balasubramanian, T. Gandhi,
and K. Kasturi. An automatic jigsaw puzzle solver.
Pattern Recognition, 1994. Vol. 1 - Conference A:
Computer Vision & Image Processing., Proceedings of
the 12th IAPR International Conference on, 1:616–618
vol.1, 9-13 Oct 1994.

[9] L. J. Latecki and R. Lakamper. Shape similarity mea-
sures based on correspondence of visual parts. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 22(10), 2000.

[10] R. Webster, P. LaFollette, and R. Stafford. Isthmus
critical points for solving jigsaw puzzles in computer
vision. IEEE Transactions on Systems, Man and Cy-
bernetics, 21(5):1271–1278, Sep/Oct 1991.

[11] H. Wolfson, E. Schonberg, A. Kalvin, and Y. Lamdan.
Solving jigsaw puzzles by computer. Ann. Oper. Res.,
12(1-4):51–64, 1988.

[12] F.-H. Yao and G.-F. Shao. A shape and image merging
technique to solve jigsaw puzzles. Pattern Recognition
Letters, 24:1819–1835, 2003.

