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1 Introduction

Background. Consider a cellular network consisting of
a set of base stations, where the signal from a given base
station can be received by clients within a certain dis-
tance from the base station. In general, these regions
will overlap. For a client, this may lead to interference
of the signals. Thus one would like to assign frequen-
cies to the base stations such that for any client within
reach of at least one base station, there is a base station
within reach with a unique frequency (among all the
ones within reach). The goal is to do this using only
few distinct frequencies. Recently, Even et al. [5] intro-
duced conflict-free colorings, as defined next, to model
this problem.

Let S be a set of n objects, and let R be a, possibly
infinite, family of ranges. In this paper, we only consider
objects and ranges that are subsets of R2, or sometimes
of R1. For a range r ∈ R, let S(r) be the subset of
objects from S intersecting the range r. A conflict-free
coloring (CF-coloring) of S with respect to R is a color-
ing of S with the following property [5]: for any range
r ∈ R for which S(r) 6= ∅ there is an object o ∈ S(r)
with a unique color in S(r), that is, with a color not used
by any other object in S(r). Trivially, a conflict-free col-
oring always exists: just assign a different color to each
object. However, one would like to find a coloring with
only few colors. This is the conflict-free coloring prob-
lem. Note that if we take S to be a set of disks—namely,
the regions within reach of each base station—and we
take R to be the set of all points in R2, then we get
exactly the range-assignment problem discussed earlier.
However, other versions—for example the dual version,
where S is a point set and R is the family of all disks—
are interesting as well.

Related work. The CF-coloring problem for points
with respect to disks was studied by Even et al. [5].
They showed that for this setting one can always find
a CF-coloring using O(log n) colors, which is tight in
the worst case. They also studies CF-colorings for
∗MADALGO Center, Department of Computer Science, Arhus

University, abam@madalgo.au.dk. MADALGO is a Center of the
Danish National Research Foundation.
†Department of Computer Science, TU Eindhoven,

mdberg@win.tue.nl. Supported by the Netherlands’ Organ-
isation for Scientific Research under project no. 639.023.301.
‡Department of Computer Science, National Tsing Hua Uni-

versity, Hsin-Chu, Taiwan, spoon@cs.nthu.edu.tw.

points with respect to disks. Har-Peled and Smorodin-
sky [7] extended those results by considering other range
spaces. In particular, they gave sufficient conditions
for a range space to allow a CF-coloring with few col-
ors. Recently, Smorodinsky [8] improved several results
from [5] by providing deterministic coloring algorithms.
Chen et al. [4] and Bar-Noy et al. [2] studied various
CF-coloring problems in an on-line setting. Here the
objects are given one by one, and each object has to be
colored when it arrives, in such a way that the coloring
remains conflict-free at all times.

Our results. Base stations in cellular networks are of-
ten not completely reliable: every now and then some
base station may (temporarily or permanently) fail to
function properly. This leads us to study fault-tolerant
CF-colorings: colorings that remain conflict-free even
after some objects are deleted from S. More precisely,
a k-fault-tolerant CF-coloring (k-FTCF-coloring) is a
coloring that remains conflict-free after an arbitrary col-
lection of k objects is deleted from S. Thus a k-FTCF-
coloring for k = 0 is simply a standard CF-coloring.

Such colorings for points with respect to disks were
also studied by Abellanas et al. [1], who showed that any
set of n points admits a k-FTCF coloring with respect
to disks that uses O(k log n) colors—see Section 2. We
show that this is tight, and we obtain upper and lower
bounds on the worst-case number of colors needed in
fault-tolerant colorings for various other types of range
spaces. We also obtain results on region-fault-tolerant
CF-colorings (region-FTCF-colorings): colorings that
remain conflict-free after the objects intersecting a geo-
metric fault region are deleted from S.

2 k-FTCF coloring of points with respect to disks

In this section we study conflict-free colorings of a point
set P = {p1, . . . , pn} in the plane with respect to the
family D of all disks in the plane.

The algorithm for k = 0 from Even et al. [5] for this
case works as follows. Compute a maximal independent
set of the Delaunay triangulation of P; assign all points
in the independent set color 1; recursively assign colors
to the rest of the points, not using color 1 anymore.
(Thus in the i-th recursive call, the color i is assigned
to the points in the independent set.)

As observed by Abellanas et al. [1], generalizing this
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algorithm to k > 1 is rather easy: we only need to
replace the Delaunay triangulation by the set of all k-
order Delaunay edges [6]. (Two points p, q ∈ P form
a k-order Delaunay edge if and only if there is a disk
containing p and q and at most k other points.) This
results in the following theorem.

Theorem 1 For any set P of n points in the plane,
there is k-FTCF coloring with respect to disks that uses
O(k log n) colors, and this is tight in the worst case.

Proof. The correctness proof and analysis of the num-
ber of colors1 of the method described above were al-
ready given by Aballenas et al. For completeness, we
summarize their argument.

To show that the algorithm produces a k-FTCF col-
oring, let D be a disk containing at least one point. If
every point inside D has a unique color, we are done.
Otherwise, let i be the maximum color appearing in the
disk at least twice. We shrink the disk until it contains
exactly two points p and q of color i. Since p and q
are in the independent set in the i-th step of the algo-
rithm, there must be at least k + 1 points in the shrunk
disk. By the choice of i, all these points have different
colors. Hence, even after deleting k of those points we
still have a unique color inside D. To prove the bound
on the number of colors, we use that there are O(kn)
k-order Delaunay edges [6], which implies there is an in-
dependent set of size Ω(n/k). If C(n) denotes the num-
ber of colors used by the algorithm, we therefore have
C(n) = 1 + C(n− Ω(n/k)). Hence, C(n) = O(k log n).

Next we prove the lower bound (which was not given
in [1]). Consider a set P of n points on the x-axis. Ob-
viously, there must be k + 1 points with a unique color.
We split the points into two roughly equal size subsets,
A and B, such that all points in A are to the left to all
points in B. One subset, say A, must contain at least
d(k + 1)/2e points with a unique color. In particular,
those colors are not used in B and we can recurse on B.
If C(n) denotes the minimum number of colors needed
for P, we thus have C(n) ≥ (k + 1)/2 + C(n/2). Hence,
C(n) = Ω(k log n). �

3 k-FTCF coloring of disks with respect to points

We now turn our attention to the case where we want
to color a set of disks with respect to points. We start
with the 1-dimensional version of this problem, where
the set of objects is a set I = {I1, . . . , In} of n intervals
on the real line. Our algorithm consists of two phases.

Phase 1: We process the intervals one by one, as fol-
lows. To process Ij , we check if every point in Ij is

1Aballenas et al. give a bound of log n/ log(24k/(24k − 1)) on
the number of colors, but it is easy to see that this is O(k log n).

contained in at least k + 1 intervals from the current
set I. If this is the case, we assign color 0 to Ij and
remove Ij from I, otherwise Ij stays in I and does not
get a color yet.

We claim that after Phase 1, every point q is con-
tained in at most 2k + 2 intervals. Indeed, the k + 1
intervals containing q and extending the farthest to the
left, and the k + 1 intervals containing q and extending
the farthest to the right, must cover every other inter-
val containing q. Hence, any such other interval will be
removed in Phase 1.

Phase 2: Now we color the remaining intervals, only
using colors from the set S = {1, . . . , d(3k + 3)/2e +
1}. To this end, we sweep from left to right. When
the sweep arrives at the left endpoint of an interval I,
we assign a color to I, as follows. Let SI be a set of
forbidden colors for I in the sense that if we assign one
of them to I, then the collection of intervals colored so
far is not a k-FTCF anymore. We take an arbitrary
color from S\SI and assign it to I.

Theorem 2 For any set of n intervals on the real line,
there is a k-FTCF coloring with respect to points that
uses d(3k + 3)/2e + 2 colors. Moreover, for any n ≥
2k + 2, there is a set of n intervals such that any k-
FTCF coloring needs at least d(3k + 3)/2e colors.

Proof. To prove the upper bound, consider the algo-
rithm described above. The intervals with color 0 can
be ignored: any point contained in such an interval is
contained in at least k + 1 intervals from the set I pro-
cessed in Phase 2, and we will show that Phase 2 pro-
duces a k-FTCF coloring. To show this, it suffices to
argue that the algorithm does not get stuck. Thus we
must prove that S\SI is not empty when some interval
I is processed. Let p be the left endpoint of I. If p
is contained in at most k other intervals, we are done,
since |SI | ≤ k in this case. Otherwise, let q ∈ I be the
leftmost point that is contained in exactly k+1 intervals
with unique colors. Such a point exists, because (i) p
is contained in at least k + 1 uniquely colored intervals,
(ii) there is a point on I contained in at most k intervals
due to Phase 1, and (iii) the current k-FTCF coloring
is valid. Since at most 2k + 2 intervals contain q and
exactly k + 1 of these intervals have unique colors, the
number of colors which is used to color intervals con-
taining q is at most k + 1 + d(k + 1)/2e = d(3k + 3)/2e.
Hence, there is at least one color, j, not used by an in-
terval containing q. We claim that j is not forbidden.
Indeed, points in I to the left of q have at least k + 2
unique colors by the choice of q, so we do not have to
worry about them. Moreover, an interval that already
has a color and contains a point to the right of q also
contains q, so such an interval will not have color j.
Hence, j is not forbidden.
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To prove the lower bound, it suffices to look at the
case n = 2k+2. Let A be a set of k+1 intervals starting
at x = 1 and ending at x = 2, and let B be a set of k+1
intervals starting at x = 2 and ending x = 3. Consider
a k-FTCF coloring of A ∪ B. At point x = 2, there
must at least k + 1 unique colors. Therefore, one of the
sets, say A, contains at least d(k + 1)/2e unique colors.
Consider the point x = 3. Since exactly k + 1 intervals
contain p, then all of them must have different colors.
Therefore, there are at least k +1+d(k +1)/2e different
colors. �

Now we go back to the 2D problem, namely k-FTCF
coloring of a set D = {D1, . . . , Dn} of n disks with re-
spect to points. Our algorithm is based on a general-
ization of admissible subsets [7], defined as follows. We
say that D̂ is an admissible subset of D if for every point
p ∈ R2 at least one of the following conditions holds:

1. p 6∈
⋃
D̂.

2. p ∈
⋃
D̂, but only one of the disks in D̂ contains p.

3. p ∈
⋃
D̂, and there are k disks in D\D̂ containing p.

We will show that for a set D there is an admissi-
ble subset of size Ω(n/k). Based on this fact, our al-
gorithm is as follows. Compute an admissible subset,
assign to all disks in the admissible subset the color 1,
and color the remaining disks recursively (where in the
i-th step we assign the color i). If C(n) is the num-
ber of colors used by the algorithm, we have C(n) =
1 + C(n − Ω(n/k)) which gives us C(n) = O(k log n).
The following example shows that our algorithm is tight.
Consider n disks with radius 1 whose centers are on a
line and that have a common point on the line. It is easy
to see that for any m (1 ≤ m ≤ n) consecutive disks
there is a point just contained in those disks. There-
fore, the same lower-bound proof given in Section 2 can
be applied here.

Theorem 3 For any set of n disks in the plane, there
is a k-FTCF coloring with respect to points that uses
O(k log n) colors, and this bound is tight in the worst
case.

Proof. (Sketch.) The lower bound has been described
above. To prove the upper bound, we need to prove
our claim that we can always find an admissible subset
of size Ω(n/k). The proof of this fact is similar to the
proof of Har-Peled and Smorodinsky [7] for the non-
fault-tolerant case. Here we sketch the basic steps in
our proof.

Following Har-Peled and Smorodinsky, we randomly
and independently color each disk in D black or white,
each with probability 1/2. We say a point p is unsafe if
it is contained in at least two black disks and at most
k white disks. We construct a graph G over the black

disks, connecting two black disks if there is an unsafe
point in their intersection. Note that any independent
set of G is an admissible subset. As [7] showed, G has at
least n/3 vertices with high probability. We show that
G has O(kn) edges, which implies there is an admissible
subset of size Ω(n/k). To show that G has O(kn) edges,
we proceed as follows. For any point p in the plane,
let d(p) denote the number of disks containing p. The
probability that p is unsafe (for points p with d(p) >

1) is (1/2d(p))
∑k

i=0

(
d(p)

i

)
. We can use this to bound

the expected number of edges created by unsafe points,
which we then use to bound the overall number of edges
in G by O(kn). �

4 Region-FTCF coloring

Let F be a family of regions, which we call the fault
regions. For a fault region F ∈ F and a point set P, we
define P	F to be the set of points that remains after the
points inside F have been removed from P. An F-FTCF
coloring of P with respect to disks is a CF-coloring of
P with respect to disks such that for any F ∈ F , the
coloring is a CF-coloring of P	F with respect to disks.
Unfortunately, when F is the set of convex regions, some
sets P require n colors in any F-FTCF coloring with
respect to disks. To see this, consider a set P of n
points on a line. For any two points p, q ∈ P, there is
a convex region F (which is an interval) containing all
points between p and q. Points p and q are adjacent in
P	F , and so they must have different colors.

The concept of region-FTCF coloring can also be de-
fined for disks with respect to points. Let D be a set
of n disks, and define D	F to be set of disks that re-
mains after the disks from D whose centers are inside F
have been removed from D. An F-FTCF-coloring of D
with respect to points is a CF-coloring of D with re-
spect to points such that for any F ∈ F , the coloring is
a CF-coloring of D	F with respect to points.

Unfortunately this variant does not allow a good so-
lution either: there are sets of disks that do not admit
a F-FTCF coloring with few colors, even if F is the
set of half-planes and the radii of the disks are equal.
Consider n disks with radius 1 whose centers lie on a
parabola very close to each other. Let p1, . . . , pn be
the centers of the disks. For any i and j, there is a
half-plane just containing centers pi+1, . . . , pj−1. After
removing the corresponding disks, there is a point in
the plane just contained in the disks whose centers are
pi and pj , which implies those disks must have different
colors. Therefore, every two disks must have different
colors, which means we need n colors.

However, we can get a coloring with few colors for the
1-dimensional version of this problem. Here we have a
set I of n intervals on the real line, and the goal is to
find an F-FTCF coloring with respect to points, where
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(a) (b) (c)

Figure 1: (a) A set of intervals (b) corresponding vertical segments in the xy-plane (c) cone regions.

F is the set of intervals. How to obtain such a coloring
is explained next.

First we assume that all intervals have a common
point (Fig. 1(a)). We map each interval [p, q] with
center c to the vertical segment in the xy-plane start-
ing at (c, p) and ending at (c, q), as depicted in Fig.
1(b). Since the intervals have a common point, there
is a horizontal line intersecting all vertical segments. A
fault region I = [a, b] ∈ F is mapped to a vertical slab
in the xy-plane, whose boundaries intersect the x-axis
in x = a and x = b. Every point p ∈ R1 is mapped
to the horizontal line y = p in the xy-plane. Now the
problem reduces to the following. The goal is to color
the vertical segments such that for every region depicted
in Fig. 1(c) in gray—namely every region consisting of
two axis-aligned cones whose apexes have the same y-
coordinates—there is a segment with a unique color in-
tersecting the region. To find such a CF-coloring, we
apply the general approach: We construct a graph G
over vertical segments, as follows. We connect two ver-
tical segments if there is such a region intersecting just
these two segments. It is easy to show that G has O(n)
edges. Therefore, it has an independent set of size Ω(n).
We color all vertical segments in the independent set
with color 1 and recursively color the rest of intervals.
Since the size of independent set is Ω(n), the number of
color used by the algorithm is O(log n).

If the intervals don’t have a common point, we first
construct an interval tree on the segments. Then we
apply the above algorithm for the intervals stored in
each internal node of the interval tree, where for each
node we use the same set of colors. We then change
the color assigned to each interval as follows: suppose it
received color i and it is stored in a node in the interval
tree at level `. Then the new color of the interval is (i, `).
Since the tree has depth O(log n), the total number of
colors used by the algorithm is O(log2 n). Moreover,
any two intervals stored at different nodes on the same
level are disjoint, so this produces a valid coloring.

Theorem 4 Let F be the family of all intervals on the
real line. For any set of n intervals on the real line,
there is an F-FTCF coloring with respect to points that
uses O(log2 n) colors.
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