
CCCG 2008, Montréal, Québec, August 13–15, 2008

Triangulating and Guarding Realistic Polygons

G. Aloupis ∗ P. Bose † V. Dujmovic ‡ C. Gray § S. Langerman ¶ B. Speckmann §

Abstract

We propose a new model of realistic input: k-guardable
objects. An object is k-guardable if its boundary can
be seen by k guards in the interior of the object. In
this abstract, we describe a simple algorithm for trian-
gulating k-guardable polygons. Our algorithm, which is
easily implementable, takes linear time assuming that k
is constant.

1 Introduction

Algorithms and data structures in computational geom-
etry often display their worst-case performance on intri-
cate input configurations that seem artificial or unrealis-
tic when considered in the context of the original prob-
lem. In “practical” situations, many algorithms and
data structures—binary space partitions are a notable
example—tend to perform much better than predicted
by the theoretical bounds. An attempt to understand
this disparity and to quantify “practical” or “normal”
with respect to input are realistic input models [5]. Here
one places certain restrictions on the shape and/or dis-
tribution of the input objects so that most, if not all, hy-
pothetical worst-case examples are excluded. Analyzing
the algorithm or data structure in question under these
input assumptions tends to lead to performance bounds
that are much closer to actually observed behavior.

Many realistic input models have been proposed.
These include low-density scenes [5], where it is as-
sumed that the number of “large” objects intersecting
a “small” volume is bounded, and local polyhedra [7],
where it is assumed that the ratio of lengths between
edges coming from a single vertex is limited by a con-
stant. One of the most widely studied realistic input
models assumes that input objects are fat, that is, they
are not arbitrarily long and skinny. There are several
ways to characterize fat objects—see the full paper for

∗Carleton University & Université Libre de Bruxelles,
greg@cg.scs.carleton.ca.

†Carleton University, jit@cg.scs.carleton.ca.
‡McGill University, vida@cs.mcgill.ca.
§TU Eindhoven, {cgray,speckman}@win.tue.nl. C.G. is sup-

ported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301. B.S. is supported by the
Netherlands’ Organisation for Scientific Research (NWO) under
project no. 639.022.707.

¶Chercheur Qualifié du FNRS, Université Libre de Bruxelles,
Belgique, stefan.langerman@ulb.ac.be.

formal definitions.
We propose a new model defining realistic input: the

number of guards that are required to see the boundary
of an input object. We use the term k-guardable to
denote any object whose boundary can be seen by k
guards. A rigorous definition of what it means for a
guard to see can be found in the next section.

In the full paper, we discuss the connection between
k-guardable polygons and other measures of realistic in-
put. In particular, we show that (α, β)-covered polygons
are k-guardable. An (α, β)-covered polygon is a type of
fat polygon designed to model the intuitive notion of
fatness for non-convex input. This is a type of polygon
P that has the property that every point p ∈ ∂P admits
a triangle with minimum angle at least α and minimum
edge length at least β · diam(P ) for given constants α
and β. In the full paper we prove:

Theorem 1 The boundary of any (α, β)-covered poly-
gon can be guarded with ⌈32π/(αβ2)⌉ guards.

In this abstract we describe an algorithm for triangu-
lating k-guardable polygons. Our algorithm, which was
designed with simplicity in mind, takes O(kn) time, that
is, linear time assuming that k is constant. We also show
that, if the link diameter—see the next section for a for-
mal definition—of the input polygon is d, this algorithm
takes O(dn) time—a slightly stronger result. In the full
paper we describe a second algorithm which also trian-
gulates k-guardable polygons in O(kn) time. That algo-
rithm uses even easier subroutines than the one given in
this abstract, but it requires the actual guards as input,
which might be undesirable in certain situations.

In 1991 Chazelle [2] presented a linear time algo-
rithm to triangulate any simple polygon. However,
after all these years it is still a major open problem
in computational geometry to design an implementable
linear-time algorithm for triangulation. There are sev-
eral implementable algorithms which triangulate poly-
gons in near-linear time. For example, Kirkpatrick et
al. [11] describe an O(n log log n) algorithm and Sei-
del [15] presents a randomized algorithm which runs
in O(n log∗ n) expected time. We contend that our al-
gorithm is conceptually simpler than the O(n log log n)
algorithm and that it has a slight advantage over the
Seidel algorithm because it is deterministic. It is also
interesting to note that the Seidel algorithm requires
Ω(n log n) random bits, which makes it theoretically un-
desirable in some models.



20th Canadian Conference on Computational Geometry, 2008

Relationships between shape complexity and the
number of steps necessary to triangulate polygons have
been investigated before. For example, it has been
shown that monotone polygons [17], star-shaped poly-
gons [14], and edge-visible polygons [16] can all be trian-
gulated in linear time by fairly simple algorithms. Other
measures of shape complexity that have been studied in-
clude the number of reflex vertices [9] or the sinuosity
[3] of the polygon.

Several algorithms and data structures exist for col-
lections of realistic objects. For example, the problem of
ray-shooting in an environment consisting of fat objects
has been studied extensively [1, 4, 10]. But there are
few results concerning individual realistic objects. We
hope that our results on triangulating realistic polygons
will encourage further research in this direction.

The following section introduces the definitions used
throughout this abstract and presents several useful
tools. Section 3 describes the triangulation algorithm.
We conclude in Section 4 with some open problems.

2 Tools and definitions

Throughout this paper let P be a simple polygon with
n vertices. We denote the interior of P by int(P ),
the boundary of P by ∂P , and the diameter of P by
diam(P ). The boundary is considered part of the poly-
gon, that is, P = int(P )∪ ∂P . We say that a point p is
in P if p ∈ int(P ) ∪ ∂P .

The segment or edge between two points p and q is
denoted by pq. The same notation implies the direction
from p to q if necessary. Two points p and q in P see
each other if pq∩P = pq. If p and q see each other, then
we also say that p is visible from q and vice versa. We
call a polygon P k-guardable if there exists a set G of k
points in P called guards such that every point p ∈ ∂P
can see at least one point in G.

p

w
P Pw

Figure 1: The visibility polygon VP (p, P ) is shaded. Pw

is the pocket of w with respect to VP (p, P ).

A star-shaped polygon is defined as a polygon that
contains a set of points—the kernel—each of which can
see the entire polygon. If there exists an edge pq ⊂ ∂P
such that each point in P sees some point on pq, then P
is weakly edge-visible. The visibility polygon of a point

p ∈ P with respect to P , denoted by VP (p, P ) is the
set of points in P that are visible from p. Visibility
polygons are star-shaped and have complexity O(n).

VP (p, P ) can be computed in O(n) time [6] with an
algorithm that is non-trivial but fairly simple. It in-
volves a single scan of the polygon and a stack. See
O’Rourke’s book [13] for a good summary.

A concept related to visibility in a polygon P is the
link distance, which we denote by ld(p, q) for two points
p and q in P . Consider a polygonal path π that con-
nects p and q while staying in int(P ). We say that π is
a minimum link path if it has the fewest number of seg-
ments (links) among all such paths. The link distance
of p and q is the number of links of a minimum link path
between p and q. We define the link diameter d of P
to be maxp,q∈P ld(p, q). The link diameter of a polygon
may be much less than the number of guards required
to see its boundary, and is upper bounded by the num-
ber of guards required to see the boundary. This can
be seen in the so-called “comb” polygons that generally
have a low link diameter but need a linear number of
guards.

Let Q be a subpolygon of P , where all vertices of Q
are on ∂P . If all vertices of Q coincide with vertices of
P , then we call Q a pure subpolygon. If ∂P intersects
an edge w of ∂Q only at w’s endpoints, then w is called
a window of Q. Any window w separates P into two
subpolygons. The one not containing Q is the pocket of
w with respect to Q (see Fig. 1).

The edge-visibility polygon, EVP (e, P ) of an edge e
with respect to polygon P consists of all points in P
that are visible from at least one point on e. We define
an extended edge-visibility polygon of e with respect to
P , denoted by EEVP (e, P ), to be the smallest pure sub-
polygon of P that contains EVP (e, P ). These concepts
are illustrated in Figure 2.

(a) (b)

x

y

P (wi)
wi

q

p

Figure 2: (a) The shaded area is the edge-visible poly-
gon of the dashed edge; (b) the associated extended edge
visible polygon.

The geodesic between two points in P is the shortest
polygonal path connecting them that is contained in P .
The vertices of a geodesic (except possibly the first and
last) belong to ∂P .



CCCG 2008, Montréal, Québec, August 13–15, 2008

Lemma 2 Let x be a vertex of polygon P and let y be
a point on edge vw ∈ P . If y sees x, then the geodesic
between x and v: (a) is a convex chain and entirely
visible from y, and (b) can be computed in O(n) time.

Proof. Property (a) holds trivially if x sees v. Consider
the case where x does not see v. Then, the triangle
(x, y, v), denoted by T , must contain at least one vertex
of P in its interior. Let I be all the vertices of P inside
T and let CH(I) be the convex hull of I. The path
S = CH(I) \ xv is the geodesic from x to v. Any other
path from x to v inside T can be shortened. Thus,
Property (a) holds.

To prove property (b), note that since the geodesic
we seek is entirely visible from y by part (a) it is fully
contained in VP (y, P ). We compute VP (y, P ) in lin-
ear time. Let z be the first intersection of ∂P and the
ray emanating from x in the direction yx. Consider
the polygonal chain from x to v along ∂VP (y, P ) that
avoids y. By construction of VP (y, P ), the shortest path
from x to v is part of the convex hull of this path. By
Melkman’s algorithm [12], the convex hull of a simple
polygonal chain can be computed in linear time. ¤

The computation of a geodesic and of an edge-visibility
polygon are the two subroutines that we use to com-
pute the EEVP . Hence, we can compute the EEVP
in linear time. Also, the EEVP is a very structured
type of polygon—the union of an edge-visible polygon
and “fan” polygons—and as such can be triangulated in
linear time.

Lemma 3 EEVP (e, P ) can be computed and triangu-
lated in O(n) time.

3 Triangulating k-guardable polygons

In this section we show how to triangulate a k-guardable
polygon in O(kn) time. The most complicated proce-
dure used in our algorithm is computing the visibility
polygon from an edge in linear time [8]. Our algorithm
relies on computing and triangulating extended edge-
visibility polygons.

We begin with an arbitrary edge e of a polygon P
and compute EEVP (e, P ). When EEVP (e, P ) is tri-
angulated, the diagonals of P that are on the boundary

x

v w
y

z

Figure 3: The geodesic from x to v.

of EEVP (e, P ) become windows of new pockets. Each
such window serves as the edge from which a new visibil-
ity polygon will be computed and triangulated, within
its respective pocket. In this recursive manner we break
pockets into smaller components until all of P is trian-
gulated. The procedure, although straightforward, is
outlined below in more detail. This is followed by the
analysis of the time complexity, where we show that the
recursion depth is of the order of the number of guards
that suffice to guard ∂P .

We will maintain a queue S of non-overlapping poly-
gons (pockets) such that each Pi ∈ S has one edge wi

labelled as a window. Thus elements of S are pairs
(wi, Pi). We start with S := (w,P ), where w is an arbi-
trary boundary edge of P . We process the elements of
S in the order in which they were inserted. The main
loop of our algorithm is as follows:

TriangulateWithoutGuards(P )

1 S := (w,P ) where w is an arbitrary edge of P
2 while S 6= ∅
3 do for each (wi, Pi) ∈ S
4 do remove (wi, Pi) from S.
5 Compute and triangulate EEVP (wi, Pi).
6 Add the edges of the triangulation to P .
7 for each boundary edge wj of

EEVP (wi, Pi) that is a diagonal of
P .

8 do identify Qj as the untriangulated
portion of P whose boundary is
enclosed by wj and ∂P .

9 S := S ∪ {
⋃

j(wj , Qj)}
10 return P .

Theorem 4 The algorithm TriangulateWithout-

Guards triangulates an n-vertex k-guardable polygon
in O(kn) time.

Proof. We first note that a tree T is created by our
algorithm. At the root of T is EEVP (w,P ). For every
window wj of EEVP (wi, Pi), EEVP (wj , Pj) is a child
of EEVP (wi, Pi). The construction of the child nodes
from their parents ensures that no EEVP overlaps with
any other and that the triangulation covers the entire
polygon P .

We now show that T has at most 3k levels (a level
is a set of nodes, each of which has the same distance
from the root), which implies that the main loop of the
algorithm performs at most 3k iterations. Let ℓi, ℓi+1,
and ℓi+2 be three successive levels of T , such that all
nodes in ℓi+1 are descendants of nodes in ℓi, and all
nodes in ℓi+2 are descendants of nodes in ℓi+1. Suppose
that a set of points G is a guarding of P : every point
p ∈ ∂P sees at least one guard of G. Assume, for the
purpose of obtaining a contradiction, that there are no
guards from G in ℓi, ℓi+1, and ℓi+2.



20th Canadian Conference on Computational Geometry, 2008

Let g be a guard which sees into a node ni at level ℓi

through window wi. There are two cases: either g is in
a level higher than ℓi or it is in a lower level. If g is in
a higher level and is visible from a window of ni, then g
can be in only one level: ℓi+1 (because ℓi+1 contains the
union of all the edge-visibility polygons of the windows
of the nodes in ℓi). We have assumed that this can not
happen. Otherwise, if g is in a lower level, it cannot see
into any higher level than ℓi, because wi must be the
window which created ni.

The combination of these two facts implies that no
guard from G can be able to see into ℓi+1. This is a
contradiction to G being a guarding set. Therefore, G
must have at least one guard in ℓi, ℓi+1, or ℓi+2. This
implies that there is at least one guard for every three
levels, or at most three levels per guard.

Each level of the tree can be processed in O(n) time by
Lemma 3, since all nodes of a level are disjoint. Thus the
algorithm terminates successfully in O(kn) time. ¤

As is apparent from the proof of Theorem 4, our al-
gorithm runs in O(tn) time, where t is the number of
iterations of the while-loop. The above argument also
implies a stronger result. The number of iterations, t,
of the while loop is proportional to the link diameter, d,
of the polygon, since any minimum link path between
two points must have at least one bend for every three
levels. This leads to the following corollary:

Corollary 5 The algorithm TriangulateWithout-

Guards triangulates an n-vertex polygon with link di-
ameter d in O(dn) time.

4 Open Problems

Our work raises some open problems. First, can these
techniques be used to design a triangulation algorithm
which does not depend on the number of guards? Sec-
ond, are there other problems that can be solved effi-
ciently for k-guardable polygons? Finally, can we find
similar results for other measures of realistic input?

Acknowledgments

This research was initiated at the Carleton-Eindhoven
Workshop on Computational Geometry, July 18–22,
2005, organized by Mark de Berg and Prosenjit Bose.
The authors are grateful to Mark de Berg for suggest-
ing the problems studied in this paper and Boris Aronov
for many discussions. We would also like to thank an
anonymous reviewer for suggesting that we consider the
link diameter as a measure of polygon complexity.

References

[1] B. Aronov, M. de Berg, and C. Gray. Ray shooting and
intersection searching amidst fat convex polyhedra in

3-space. In Proc. 22nd Symposium on Computational

Geometry, pages 88–94, 2006.

[2] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete and Computational Geometry, 6(5):485–
524, 1991.

[3] B. Chazelle and J. Incerpi. Triangulation and shape-
complexity. ACM Transactions on Graphics, 3(2):135–
152, 1984.

[4] M. de Berg. Vertical ray shooting for fat objects.
In Proc. 21st Symposium on Computational Geometry,
pages 288–295, 2005.

[5] M. de Berg, A. F. van der Stappen, J. Vleugels, and
M. J. Katz. Realistic input models for geometric algo-
rithms. Algorithmica, 34(1):81–97, 2002.

[6] H. A. El Gindy and D. Avis. A linear algorithm for
computing the visibility polygon from a point. Journal

of Algorithms, 2:186–197, 1981.

[7] J. Erickson. Local polyhedra and geometric graphs.
Computational Geometry: Theory and Applications,
31:101–125, 2005.

[8] P. J. Heffernan and J. S. B. Mitchell. Structured vis-
ibility profiles with applications to problems in simple
polygons. In Proc. 6th Symposium on Computational

Geometry, pages 53–62, 1990.

[9] S. Hertel and K. Mehlhorn. Fast triangulation of sim-
ple polygons. In Proc. FCT-Conference on Fundamen-

tals of Computation Theory, pages 207–218, LNCS 158,
Springer Verlag, 1983.

[10] M. J. Katz. 3-d vertical ray shooting and 2-d point en-
closure, range searching, and arc shooting amidst con-
vex fat objects. Computational Geometry: Theory and

Applications, 8:299–316, 1997.

[11] David G. Kirkpatrick, Maria M. Klawe, and Robert En-
dre Tarjan. Polygon triangulation in O(nloglogn) time
with simple data structures. Discrete & Computational

Geometry, 7:329–346, 1992.

[12] A. A. Melkman. On-line construction of the convex hull
of a simple polyline. Information Processing Letters,
25(1):11–12, Apr. 1987.

[13] J. O’Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, New York, NY, 1987.

[14] A. Schoone and J. van Leeuwen. Triangulating a star-
shaped polygon. Technical Report RUU-CS-80-03, In-
stitute of Information and Computing Sciences, Utrecht
University, 1980.

[15] R. Seidel. A simple and fast incremental randomized al-
gorithm for computing trapezoidal decompositions and
for triangulating polygons. Computational Geometry:

Theory and Applications, 1:51–64, 1991.

[16] G. T. Toussaint and D. Avis. On a convex hull algo-
rithm for polygons and its application to triangulation
problems. Pattern Recognition, 15(1):23–29, 1982.

[17] G. T. Toussaint. A new linear algorithm for triangu-
lating monotone polygons. Pattern Recognition Letters,
2:155–158, 1984.


