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Abstract

Bárány, Hubard, and Jerónimo recently showed that for
given well separated convex bodies S1, . . . , Sd in R

d and
constants βi ∈ [0, 1], there exists a unique hyperplane h
with the property that Vol(h+ ∩Si) = βi·Vol(Si); h+ is
the closed positive transversal halfspace of h, and h is
a “generalized ham-sandwich cut”. We give a discrete
analogue for a set S of n points in R

d which is parti-
tioned into a family S = P1 ∪ · · · ∪ Pd of well separated
sets and are in weak general position. The combinato-
rial proof inspires an O(n(log n)d−3) algorithm which,
given positive integers ai ≤ |Pi|, finds the unique hy-
perplane h incident with a point in each Pi and having
|h+ ∩ Pi| = ai. Finally we show that the conditions as-
suring existence and uniqueness of generalized cuts are
also necessary.

1 Introduction.

Given d sets S1, S2, ..., Sd ∈ R
d, a ham-sandwich cut is a

hyperplane h that simultaneously bisects each Si. “Bi-
sect” means that µ(Si ∩ h+) = µ(Si ∩ h−) <∞, h+, h−

the closed halfspaces defined by h and µ a suitable,
“nice” measure on Borel sets in R

d, e.g., the volume.
The well known ham-sandwich theorem guarantees the
existence of such a cut. As with other consequences of
the Borsuk-Ulam theorem [10] there is a discrete ver-
sion that applies to sets P1, . . . , Pd of points in general
position in R

d. For example Lo et. al [9] gave a direct
proof of a discrete version of the ham-sandwich theorem
which inspired an efficient algorithm to compute a cut.
More recently Bereg [4] studied a discrete version of a
result of Bárány and Matoušek [2] that showed the exis-
tence of wedges that simultaneously equipartition three
measures on R

2 (they are called equitable two-fans). By
seeking a direct, combinatorial proof of a discrete ver-
sion (for counting measure on points sets in R

2) he was
able to strengthen the original result and also obtained a
beautiful, nearly optimal algorithm to construct an eq-
uitable two-fan. Finally, Roy and Steiger [12] followed
a similar path to obtain complexity results for several
other combinatorial consequences of the Borsuk-Ulam
theorem.
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The present paper is in the same spirit. The starting
point is a recent, interesting result about generalized
ham-sandwich cuts.

Definition 1: (see [8]) Given k ≤ d + 1, a family
S1, . . . , Sk of connected sets in R

d is well-separated if,
for every choice of xi ∈ Si, the affine hull of x1, . . . , xk

is a (k − 1)-dimensional flat in R
d.

Bárány et.al. [1] proved

Proposition 1 Let K1, ..., Kd be well separated convex
bodies in R

d and β1, . . . , βd given constants with 0 ≤
βi ≤ 1. Then there is a unique hyperplane h ⊂ R

d

with the property that Vol(Ki ∩ h+) = βi·Vol(Ki), i =
1, . . . , d.

Here h+ denotes the closed, positive transversal halfs-
pace defined by h: that is the halfspace where, if Q is
an interior point of h+ and zi ∈ Ki ∩ h, the d-simplex
∆(z1, ..., zd, Q) is negatively oriented [1]. Specifying this
choice of halfspaces is what forces h to be uniquely de-
termined. Bárány et. al. give analogous results for
such generalized ham-sandwich cuts for other kinds of
well separated sets that support suitable measures.

We are interested in a version of Proposition 1 for
n points partitioned into d sets in R

d; i.e., points in
S = P1 ∪ · · · ∪ Pd, Pi ∩ Pj = φ, i 6= j, |S| = n. For this
context we use

Definition 2: Point sets P1, ..., Pd are well separated
if their convex hulls, Conv(P1), . . . , Conv(Pn), are well
separated.

We need some kind of general position, and will assume
the following weaker form.

Definition 3: Points in S = P1 ∪ . . . ∪ Pd have
weak general position if, for each (x1, . . . , xd), xi ∈ Pi,
aff(x1, . . . , xd) is a (d − 1)-flat that contains no other
point of S.

This does not prohibit more than d data points from
being in a hyperplane, e.g. if they are all in the same
Pi. For the discrete analogue of a generalized cut we
use

Definition 4: Given positive integers ai ≤ |Pi|, an
(a1, ..., ad)-cut is a hyperplane h for which h ∩ Pi 6= φ
and |h+ ∩ Pi| = ai, 1 ≤ i ≤ d.

As in Proposition 1, a cut is a transversal hyperplane
(here incident with at least one data point in each Pi)
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and h+ its positive halfspace. The discrete version of
Proposition 1 is

Theorem 2 If P1, . . . , Pd are well separated point sets
in R

d, then (i) if an (a1, ..., ad)-cut exists, it is unique.
Also (ii) if the points have weak general position, cuts
exist for every (a1, ..., ad), 1 ≤ ai ≤ |Pi|.

This might be proved using some results of [1] via a
standard argument that takes the average of n proba-
bility measures, one centered at each data point. The
variance of the measures is decreased to zero, and one
argues about the limit (see [7]). Instead we give a direct
combinatorial proof in Section 2. In addition, and of in-
dependent interest, we show that both well-separated
and weak general position are also necessary for every
possible (a1, ..., ad)-cut to exist and be unique. An anal-
ogous converse is likely to hold for Proposition 1.

There is also interest in the algorithmic problem
where, given n points distributed among d well sepa-
rated sets in R

d, and in weak general position, the ob-
ject is to find the cut for given a1, . . . , ad. Our proof
of Theorem 2 leads to the formulation of an efficient,
O(n(log n)d−3) algorithm for generalized cuts. This ap-
pears in Section 3. Throughout, because of space limi-
tations, some details are omitted.

2 Proof of the Discrete Version.

There are several equivalent forms of the well separated
property for connected sets [3], in particular the fact
that such a family is well separated if and only if the
convex hulls are well separated. Others include

1. Sets S1, . . . , Sk, k ≤ d + 1 are well separated if
and only if, when I and J are disjoint subsets of
1, . . . , d + 1, there is a hyperplane separating the
sets Si, i ∈ I from the sets Sj , j ∈ J .

2. S1, . . . , Sd are well separated in R
d if and only if

there is no (d − 2)-dimensional flat that meets all
Conv(Si), i = 1, . . . , d.

In view of Definition 2, they hold for the discrete context
as well.

Given points pi ∈ Conv(Pi), i = 1, . . . , d (not
necessarily data points in S), the hyperplane h ≡
aff{p1, . . . , pd} is a transversal hyperplane of dimension
d−1. As in Bárány et. al. [1], if a unit vector c satisfies
〈c, pi〉 = t for some fixed constant t and for all i, the
unit normal vector v of h can be chosen as either c or
−c. The positive transversal hyperplane arises when v
is chosen so that,

det
∣
∣
∣
∣

p1 p2 · · · pd v
1 1 · · · 1 0

∣
∣
∣
∣ > 0.

We can write h as {p ∈ R
d : 〈p, v〉 = t}, and h+, the

positive transversal halfspace, as

h+ = {p ∈ R
d : 〈p, v〉 ≤ t}.

The relation p ∈ h+ is invariant under translation and
rotation.

Proof of Theorem 2: The proof is by induction. The
base case d = 2 is probably folklore (but see [11]). Well
separated implies that points in P1 may be dualized to
(red) lines having positive slopes and those in P2, to
(blue) lines having negative slope. If a red/blue inter-
section q has a1 red lines and a2 blue lines above it,
vertex q is the dual of an (a1, a2)-cut. It must be the
unique one because the red levels have positive slope
and blue ones have negative slope, proving (i).

If P1 and P2 also have weak general position, every
red/blue intersection in the dual is a distinct vertex,
|P1| · |P2| of them in all, and each is incident with just
those two lines. This implies that each level in the first
arrangement has a unique intersection with every level
of the second, proving (ii). In fact the unique inter-
section can be found in linear time by adapting the
prune-and-search algorithm given in [11] for intersection
of median levels.

Next, suppose the claim holds for dimension j < d.
Let π be a hyperplane that separates P1 from

⋃d
i=2 Pi.

Fix a point x ∈ Conv(P1), project each data point z ∈
⋃d

i=2 Pi onto π, and write P ′
i for the set of images in π

of the points z ∈ Pi.

Fact 1: P ′
2, . . . , P ′

d are d− 1 well-separated sets in π.

If not there is a d − 3 flat ρ ⊂ π that meets all
Conv(P ′

i ), i ≥ 2. But the span of x and ρ is a d − 2
flat that meets all P1, . . . , Pd, a contradiction.

Fact 2: If P1, . . . , Pd have weak general position and
if x ∈ P1 then P ′

2, . . . , P ′
d have weak general position in

π.

A transversal flat ρx ⊂ π has dimension d−2 by Fact 1.
If it contains one point xi from each P ′

i , i > 1 and any
other z ∈ ⋃d

i=2 P ′
i , then x and ρx span a hyperplane that

violates weak general position for P1, . . . , Pd.

Therefore the induction hypotheses apply to P ′
2, . . . , P ′

d.
Given a point x ∈ Conv(P1) and (a2, . . . , ad), a hy-

perplane hx containing x is an (a2, . . . , ad) semi-cut (or
just a semi-cut) if, for each i > 1, it is incident with a
point pi ∈ Pi and |h+

x ∩ Pi| = ai. It’s not hard to prove
the following useful fact.

Lemma 3 Given x ∈ Conv(P1) and (a2, . . . , ad). If
there is an (a2, . . . , ad) semi-cut hx then it is unique.

To advance the induction, fix (a1, . . . , ad) and suppose
hx is a cut with these values, x ∈ P1. By Lemma 3,
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it is the unique semi-cut cut containing x, so suppose
there is an (a2, . . . , ad) semi-cut hy through y ∈ P1, y 6∈
hx. hx and hy cannot meet in Conv(P1) since any such
point would be in two different (a2, . . . , ad) semi-cuts,
violating Lemma 3. But this implies that a1 6= |P1∩h+

y |.
Therefore hx is unique, which proves (i).

Now suppose P1, . . . , Pd have weak general position
and fix x ∈ P1 and (a2, . . . , ad). Projecting from x,
there is a unique (a2, . . . , ad)-cut ρx ⊂ π by the induc-
tion hypothesis and the fact that each z′ ∈ ⋃d

i=2 P ′
i is

the image of a distinct z ∈ ⋃d
i=2 Pi. x and ρx span

a hyperplane hx that is an (mx, a2, . . . , ad)-cut, mx de-
noting |P1∩h+

x |. Lemma 3 implies that there is no other
(mx, a2, . . . , ad)-cut. Also, repeating this procedure for
every x ∈ P1, existence and uniqueness imply that the
integers mx, x ∈ P1 form a permutation of 1, . . . , |P1|.
So for some z ∈ P1 we have the unique (a1, . . . , ad)-cut,
and this proves (ii).

In fact the conditions of the Theorem are also neces-
sary.

Corollary 4 Well separation and weak general posi-
tion are necessary if all (a1, . . . , ad)-cuts exist and are
unique.

Weak general position is necessary for the existence and
uniqueness of all (a1, . . . , ad)-cuts by simple counting.
There are |P1|·|P2| · · · |Pd| different d-tuples (a1, . . . , ad)
and there are this many different transversal hyper-
planes through data points only if we have weak general
position.

Now suppose P1, . . . , Pd are not well separated. By
property 1 at the beginning of this section, there
is a partition I ∪ J of {1, . . . , d}, such that A =
Conv(

⋃
i∈I Pi)∩Conv(

⋃
j∈J Pj) 6= φ. For points in A on

the boundaries of the convex hulls, weak general posi-
tion is violated. For points of A interior to both convex
hulls, any half space containing

⋃
i∈I Pi also contains

at least one point in
⋃

j∈J Pj in its interior. If we set
ai = 1 for i ∈ I, ai = |Pi| for i ∈ J , no (a1, . . . , ad)-cut
can exist.

3 An Algorithm for Generalized Cuts.

From now on we assume weak general position and
well separation. Theorem 2 implies that there is a
unique set of data points p1, . . . , pd, pi ∈ Pi, for which
aff(p1, . . . , pd) is an (a1, . . . , ad)-cut. So we could use
a brute force enumeration and find it in O(nd+1), O(n)
being the cost to test each d-tuple.

A small improvement can be obtained by resorting to
the following algorithmic result of [9] (slightly restated
to reflect new upper bounds on k-sets [6], [13]).

Proposition 2. Given n points in R
d which are par-

titioned into d sets P1, . . . , Pd in R
d, a ham-sandwich

cut can be computed in time proportional to the (worst-
case) time needed to construct a given level in the ar-
rangement of n given hyperplanes in R

d−1. The latter
problem can be solved within the following bounds:

O(n4/3 log2 n/ log∗ n) for d = 3,
O(n5/2 log1+δ n) for d = 4,
O(nd−1−a(d)) for d ≥ 5.

δ > 0 is an appropriate constant and a(d) > 0 a small
constant; also a(d)→ 0 and d→∞.

It is not difficult to verify that the ham-sandwich algo-
rithms given in [9] may be extended to find generalized
cuts for well separated points sets having weak general
position - given that they exist - and in this way, the
complexity of finding generalized cuts may be reduced
to O(nd−1−a(d)).

Finally, we will describe a much more practical al-
gorithm, applying ideas from the proof in Section 2.
We showed there that for each data point x ∈ P1 and
(a2, . . . , ad), there is a unique (mx, a2, . . . , ad)-cut hx

that contains x. Furthermore, for each j, 1 ≤ j ≤ |P1|,
there is a unique x ∈ P1 for which mx = j. Thus
we could loop through all x ∈ P1, project onto π,
find the unique (a2, . . . , ad) cut ρx ⊂ π, and count
mx = |P1 ∩ h+

x | for hx, the hyperplane spanned by x
and ρx. At some stage we will find the z ∈ P1 for which
mz = a1 and hz is the (a1, . . . , ad)-cut. The cost would
be bounded by the cost to solve n (d − 1)-dimensional
problems.

In fact we will find the desired z ∈ P1 by solving at
most O(log n) (d−1)-dimensional problems. The key is
to be able to prune a fixed fraction of remaining points
in P1 after each search step, and uses the fact that if
nx < a1, no point y ∈ h+

x ∩ P1 has ny = a1.

ALGORITHM GEN-CUT

1. choose c > 0, a small, fixed integer (say 10)

2. Find a hyperplane π that separates P1 from
P2 ∪ · · · ∪ Pd

3. C ← P1

4. a← a1

5. WHILE |C| > c DO

• Construct A, an ε-approximation to C

• FOR each x ∈ A DO

(a) Project each y ∈ P2 ∪ · · · ∪ Pd onto π;
let P ′

i denote the projections of the
points in Pi

(b) Find the (a2, ..., ad)-cut ρx ⊂ π for
the projections P ′

2, . . . , P ′
d by solving

a (d− 1)-dimensional problem



20th Canadian Conference on Computational Geometry, 2008

(c) Get hx, the hyperplane that spans x
and ρx.

(d) Compute the number of points of C
in the positive transversal halfspace
h+

x

(e) END FOR

• Prune from C points x ∈ P1 whose mx is
too small or too large, and adjust C and
a

• END WHILE

6. For each remaining data point in x ∈ C,
project, find the (a2, ..., ad)-cut ρx in π for the
projections by solving a (d − 1)-dimensional
problem, get hx and compute mx = |P1 ∩ h+

x |,
stopping when mx = a1.

Finding a separating hyperplane π can be formulated
as a linear programming problem and can be solved in
time O(n), for fixed dimension d. C is the set of candi-
dates for the sought point z ∈ P1; initially C = P1. a
denotes the number of undeleted points in the positive
transversal halfspace of z’s semicut; initially a = a1.

In the while loop we construct an ε-approximation to
C. The range space (C,A), has VC dimension d + 1,
where A denotes the set of all halfspaces in R

d that
contain some points in C. By [5], in O(|C|) time [i.e.,
linear; in fact its O((d + 1)3(d+1)(d+1

ε2 log d+1
ε )d+1|C|)]

we can construct an ε-approximation A ⊂ C, having
constant size [in fact |A| = k = O(d+1

ε2 log d+1
ε )].

The FOR loop is traversed k = |A| times. The cost
of each traversal is dominated by O(Bd−1), the cost of
the (d − 1)-dimensional problem in (b); the cost of (a)
is O(n) and (d) is O(|C|).

At the end of the FOR we have for each x ∈ A, the
value of nx = |h+

x ∩ C|. These distinct values order the
elements x ∈ A, and our target value, a, is less than
the smallest nx, greater than the largest nx, or between
a successive pair in the ordering. In the first case we
delete all y ∈ C, y 6∈ h+

u , where nu = min (nx, x ∈ A).
In the third case we delete all y ∈ C, y ∈ h+

v , where
nv = max (nx, x ∈ A); here we also reduce a by a ←
a − nv. The middle case is similar. Since A is an ε-
approximation, only a constant fraction (< 1/(k + 1) +
2ε) of the points in C remains after pruning.

The geometric decrease in |C| implies that the num-
ber of iterations of the WHILE loop is bounded by
O(log |P1|) = O(log n). Therefore Step 5b contributes
O(Bd−1 log n) to the total cost of the loop, where Bk

denotes the complexity of the present algorithm in di-
mension k. This dominates the total cost of the loop
because all other steps have cost either O(n) or (O|C|)
and contribute a total of O(n log n) to the loop.

When the loop terminates, each remaining point in
C is treated in time O(Bd−1) by executing Steps 5a

through 5d. Then, instead of Step 5e, we test whether
|h+∩P1| = a1; exactly one point will have this property.
Since the base case for dimension d = 2 has linear run-
ning time, the present algorithm will find a generalized
cut in O(n(log n)d−2).

Finally, for d = 3, Lo, et. al. [9] showed how to
find a ham-sandwich cut for well separated point sets in
linear time. That algorithm is easily adapted to gener-
alized cuts. Using this as the base case, the algorithm
just described now has running time O(n(log n)d−3) for
dimensions d ≥ 3.

We tried to find a way to do the inductive step in con-
stant time, similar to the way Lo et. al. did for sep-
arated ham sandwich cuts in R3, but did not succeed.
A main open question is whether there is an O(n) algo-
rithm for this problem.
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[9] C.-Y. Lo, J. Matoušek, and W. Steiger. “Algorithms
for Ham-Sandwich Cuts”. Discrete and Computational
Geom. 11, 433-452 (1994).
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