
CCCG 2008, Montréal, Québec, August 13–15, 2008

Generalized Ham-Sandwich Cuts for Well Separated Point Sets

William Steiger ∗ Jihui Zhao‡

Abstract

Bárány, Hubard, and Jerónimo recently showed that for
given well separated convex bodies S1, . . . , Sd in R

d and
constants βi ∈ [0, 1], there exists a unique hyperplane
h with the property that Vol(h+ ∩ Si) = βi·Vol(Si); h+

is the closed positive transversal halfspace of h, and h
is called a “generalized ham-sandwich cut”. We give a
discrete analogue for n points in general position in R

d

which are partitioned into a family S = P1 ∪ · · · ∪Pd of
well separated sets. The combinatorial proof inspires an
O(n(log n)d−3) algorithm which, given positive integers
ai ≤ |Pi| and |P1| + · · · + |Pd| = n, finds the unique
hyperplane h incident with a point in each Pi and having
|h+ ∩ Pi| = ai.

1 Introduction.

Given d sets S1, S2, ..., Sd ∈ R
d, a ham-sandwich cut is a

hyperplane h that simultaneously bisects each Si. “Bi-
sect” means that µ(Si ∩ h+) = µ(Si ∩ h−) <∞, h+, h−

the closed halfspaces defined by h and µ a suitable,
“nice” measure on Borel sets in R

d, e.g., the volume.
The well known ham-sandwich theorem guarantees the
existence of such a cut. As with other consequences of
the Borsuk-Ulam theorem [9] there is a discrete version
that applies to sets P1, . . . , Pd of points in general po-
sition in R

d. For example Lo et. al [8] gave a direct
proof of a discrete version of the ham-sandwich theo-
rem which inspired an efficient algorithm to compute a
cut. More recently Bereg [4] studied a discrete version
of a result of Bárány and Matoušek [2] showing the exis-
tence of wedges that simultaneously equipartition three
measures on R

2 (they are called equitable two-fans). By
seeking a direct, combinatorial proof of a discrete ver-
sion (for counting measure on points sets in R

2) he was
able to strengthen the original result and to obtain a
beautiful, nearly optimal algorithm to construct an eq-
uitable two-fan. Finally Roy and Steiger [11] followed
the same path to obtain complexity results for several
other consequences of Borsuk-Ulam.

The present paper is in the same spirit. The starting
point is a recent, interesting result about generalized
ham-sandwich cuts.
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Definition: Given k ≤ d+1, sets S1, . . . , Sk in R
d are

well-separated if, for every choice of xi ∈ Si, the affine
hull of x1, . . . , xk is a (k − 1)-dimensional flat in R

d.

Bárány et.al. [1] proved

Proposition 1 Let K1, ..., Kd be well separated convex
bodies in R

d and β1, . . . , βd given constants with 0 ≤
βi ≤ 1. Then there is a unique hyperplane h ⊂ R

d

with the property that Vol(Ki ∩ h+) = βi·Vol(Ki), i =
1, . . . , d.

Here h+ denotes the closed, positive transversal halfs-
pace defined by h: that is the halfspace where, if Q is
an interior point of h+ and zi ∈ Ki ∩ h, the d−simplex
∆z1, ..., zd, Q is negatively oriented [1]. Specifying this
choice of halfspaces is what forces h to be uniquely de-
termined. Bárány et. al. give analogous results for
such generalized ham-sandwich cuts for other kinds of
well separated sets that support suitable measures.

Here we are interested in a version of Theorem 1 for
sets P1, ..., Pd of points in general position in R

d. We
will use

Definition: A hyperplane h is an ai-cut for the set Pi

if

• h ∩ Pi 6= ∅ and

• |h+ ∩ Pi| = ai.

Definition: Given positive integers ai ≤ |Pi|, an
(a1, ..., ad)−cut is a hyperplane h which, for each 1 ≤
i ≤ d, is an ai−cut for Pi.

Such a cut is the discrete analogue of the generalized
ham-sandwich cut in Theorem 1. In the next section
we give a direct combinatorial proof of

Theorem 2 Let P1, . . . , Pd be sets of points in general
position in R

d which are well separated, and where |P1|+
· · · + |Pd| = n. Given positive integers ai ≤ |Pi|, there
is a unique hyperplane h that is an (a1, . . . , ad)−cut.

This could be proved using the results of [1] via a stan-
dard argument that takes the average of n probability
measures, one centered at each point. The variance of
the measures is decreased to zero, and one argues about
the limit (see [7]). However there is also interest in the
algorithmic problem where, given n points distributed
among d well separated sets in R

d, the object is to find
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the cut for given a1, . . . , ad. The combinatorial proof of
Theorem 2 that we give leads to the formulation of an
efficient, O(n(log n)d−3) algorithm for generalized cuts.
The proof is in the next section. Some details are omit-
ted because of the space limitations. We explain the
algorithm in Section 3.

2 The Discrete Version.

We mention several equivalent forms of “well separated”
that are known [3], or properties that hold for well sep-
arated sets.

1. Sets S1, . . . , Sk, k ≤ d + 1 are well separated if
and only if, when I and J are disjoint subsets of
1, . . . , d + 1, there is a hyperplane separating the
sets Si, i ∈ I from the sets Sj , j ∈ J .

2. Sets Si are well separated if and only if the sets
Conv(Si) are well separated, i ≤ d + 1.

3. S1, . . . , Sd are well separated in R
d if and only if

there is no (d−2)-dimensional transversal flat that
meets all of them.

We will assume that we have d well separated sets
P1, . . . , Pd of points in R

d with |Pi| = ni and n1 + · · ·+
nd = n. The n points in S = P1 ∪ · · · ∪Pd are supposed
to be in general position, so no (k−1)−dimensional flat
in R

d contains more than k points of S, k ≤ d.
Under these assumptions, given d points p1, . . . , pd,

pi ∈ Pi, the hyperplane h ≡ aff{p1, . . . , pd} is a
transversal hyperplane of dimension d−1. If a unit vec-
tor c satisfies 〈c, pi〉 = t for some fixed constant t and
for all i, the unit normal vector v of h can be chosen
as either c or −c. The positive transversal hyperplane
arises when v is chosen so that, [1]

det
∣
∣
∣
∣

p1 p2 · · · pd v
1 1 · · · 1 0

∣
∣
∣
∣
> 0.

In this case we write h as {p ∈ R
d : 〈p, v〉 = t}, and h+,

the positive transversal halfspace, as

h+ = {p ∈ R
d : 〈p, v〉 ≤ t}.

It is not hard to show that if p is in h+, no matter how we
rotate or translate the coordinate system, p will always
be in h+. This property is important and simplifies the
arguments in the detailed proofs.

Here we (only) sketch the main ideas for the combi-
natorial proof of Theorem 2. This proof gives geometric
and combinatorial insights that lead to an efficient al-
gorithm.

Proof of Theorem 2: The proof is by induction. For
d = 2 the statement is folklore (see [10]). Points in P1

may be dualized to lines having positive slopes and those

in P2, to lines having negative slope. Then each level
in the first arrangement has a unique intersection with
every level of the second. The unique intersection can
be found in linear time (see Lo et. al. [8] or Megiddo
[10]).

Next suppose that the claim holds for dimension
j < d. We fix one of the sets, say P1 and a point
x ∈ Conv(P1).

Definition: Given a point x ∈ Conv(P1), a hyperplane
hx a semi-cut if

• x ∈ hx and

• If |(P1 ∪ {x}) ∩ h+
x | = m, then hx is an

(m, a2, . . . , ad)-cut for (P1∪{x}), P2 . . . , Pd, where
h+

x is the positive transversal halfspace defined by
hx.

It is easy to establish

Lemma 3 For every x ∈ Conv(P1) there is a unique
semi-cut hx.

Proof: Because P1, . . . , Pd are well separated, we can
find a hyperplane π that separates P1 from P2∪· · ·∪Pd.
Choose a point x ∈ Conv(P1) and project each z ∈
P2 ∪ · · · ∪Pd onto π. Let P ′

i denote the set of images in
π of the points z ∈ Pi. It follows that

Fact: P ′
2, . . . , P ′

d are d− 1 well-separated sets in π.

By way of contradiction suppose not. Then there exists
a (d−3) dimensional flat ρ ⊂ π that meets all these pro-
jections, and the span of x and ρ is a (d−2)−dimensional
flat in R

d that meets all Conv(Pi), i = 1, . . . , d. But this
contradicts the fact that P1, . . . , Pd are well-separated,
and thus proves the Fact.

By the induction hypotheses, there exists a unique
(a2, . . . , ad)−cut ρ in π. Let h be the span of x and
ρ. It is easy to show that for any given data point
z ∈ P2 ∪ · · · ∪Pd, we have z ∈ h+ if and only if z′ ∈ ρ+,
where z′ is the projection of z on π. The statement in
the lemma now follows since h is a semi-cut and because
ρ is unique. �

Now for each point p ∈ P1, there is a unique semi-cut
hp. And for different p, q ∈ P1, the cuts hp and hq do
not meet in Conv(P1), since otherwise, there would be
a point z ∈ Conv(P1) that is in both cuts. Because z
must have a unique semi-cut, both p and q would have
to be in the same semi-cut, a fact that would contradict
the general position assumption. Thus, for p, q ∈ P1,
p ∈ hq if and only if q 6∈ hp.

Finally, consider the semi-cuts hx for each x ∈ P1.
The previous property easily implies that the integers
ax ≡ |h+

x ∩P1|, x ∈ P1, form a permutation of 1, . . . , n1.
Thus one data point x ∈ P1 has |h+

x ∩ P1| = a1 and
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therefore, it determines an (a1, . . . , ad)-cut; in fact x is
the unique point in P1 with this property. This advances
the induction and thus proves the theorem. �

3 An Algorithm for Generalized Cuts

The statement of Theorem 2 implies that there is a
unique set of data points p1, . . . , pd, pi ∈ Pi, for which
aff(p1, . . . , pd) is an (a1, . . . , ad)−cut. So we could use
a brute force enumeration and find it in O(nd+1), O(n)
being the cost to test each d−tuple..

A small improvement can be obtained by resorting to
the following algorithmic result of [8] (slightly restated
to reflect new upper bounds on k-sets [6], [12]).

Proposition 2. Given n points in R
d which are par-

titioned into d sets P1, . . . , Pd in R
d, a ham-sandwich

cut can be computed in time proportional to the (worst-
case) time needed to construct a given level in the ar-
rangement of n given hyperplanes in R

d−1. The latter
problem (i) requires at least Ω(nd−2) time; (ii) is easy
to solve in O(nd−1) time; (iii) can be solved within the
following bounds:

O(n4/3 log2 n/ log∗ n) for d = 3,
O(n5/2 log1+δ) for d = 4,
O(nd−1−a(d)) for d ≥ 5.

δ > 0 is an appropriate constant and a(d) > 0 a small
constant; also a(d)→ 0 and d→∞.

It is not difficult to verify that the ham-sandwich algo-
rithms given in [8] may be extended to find generalized
cuts and in this way, the complexity of generalized cuts
may be reduced to O(nd−1−a(d)).

Finally, we describe a much more practical algorithm,
applying ideas from the proof in Section 2. We showed
there that for each data point x ∈ P1, there is a unique
semi-cut that contains x. Furthermore, for each j, 1 ≤
j ≤ n1, there is an x ∈ P1 whose semi-cut has exactly
j points of P1 in its positive transversal halfspace. We
will search for the data-point z ∈ P1 whose semi-cut has
a1 points of P1 in its positive transversal halfspace. To
do this we effect a binary-like search by constructing an
approximate center point µ of P1 and finding its semi-
cut h. We then compute |h+ ∩ P1| and can eliminate
all points in one of the open halfspaces defined by h, a
fixed fraction of the n1 points in P1. Iterating in this
fashion on the remaining candidates in P1 we will find
the z ∈ P1 after O(log n) such search steps. The cost
for each step of the search is dominated by the cost to
find a generalized cut in dimension d− 1.

ALGORITHM GEN-CUT

• choose c > 0, a small, fixed integer (say 10)

• Find a hyperplane π that separates P1 from
P2 ∪ · · · ∪ Pd

• C ← P1

• a← a1

• WHILE |C| > c DO

1. Find a point µ in Conv(C) with Tukey
depth at least |C|

2d

2. Project each z ∈ P2 ∪ · · · ∪ Pd onto π; let
P ′

i denote the projections of the points
in Pi

3. Find the (a2, ..., ad)-cut ρ in π for the pro-
jections P ′

2, P ′
3, . . . , P ′

d by solving a (d−1)
dimensional problem

4. Get h, the hyperplane that spans µ and
ρ.

5. Compute the number of points of C in
the positive transversal hyperplane h+,
and compare it with a

6. Remove the points above or below h
from C and adjust C and a

• END WHILE

• For each remaining data point in C, check if
it is the point z ∈ P1 whose semi-cut has a1

points of P1 in the positive transversal half-
space, stopping when z is found.

Finding a separating hyperplane π can be formulated
as a linear programming problem and can be solved in
time O(n), for fixed dimension d. C is the set of candi-
dates for the sought point z ∈ P1; initially C = P1. a
denotes the number of undeleted points in the positive
transversal halfspace of z’s semicut; initially a = a1.

In Step 1, we need to find a point µ with large
Tukey depth. We do it by constructing an approxi-
mate centerpoint: The system (C,A), where A is the
set of all halfspaces in R

d that contains some points
in C, has VC dimension d + 1. So we can construct
A, an ε-approximation of size O(d+1

ε2 log d+1
ε ) in time

O((d + 1)3(d+1)(d+1
ε2 log d+1

ε )d+1|C|) time (see e.g., [5].
If µ ∈ A is the Tukey median of the points in A, then
its depth (in C) is at least ( 1

d+1 − ε)|C|. If we take
ε = 1

d+1 − 1
2d , this guarantees that µ has depth at least

|C|/(2d), and any positive transversal halfspace contain-
ing µ will have at least this many points of C. The cost
to compute A and µ is O(|C|).

In Step 5, suppose |h+ ∩ C| = t < a. Then the point
z ∈ P1 we seek is not in h+, so we remove from C all
points in h+ ∩ C, and adjust a← a− t. Otherwise, we
can remove from C all points that are not in h+. In
both cases at least a fixed fraction 1/(2d) is deleted.
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The geometric decrease in |C| implies that the num-
ber of iterations of the loop is bounded by O(log n1) =
O(log n). Therefore Step 3 contributes O(Bd−1 log n) to
the total cost of the loop, where Bk denotes the com-
plexity of the present algorithm in dimension k. This
dominates the total cost of the loop because all other
steps have cost either O(n) or (O|C|) and contribute a
total of O(n log n) to the loop.

When the loop terminates, each remaining point in
C is treated in O(Bd−1) by executing Step 2 through
Step 4; then, instead of Step 5, we test whether |h+ ∩
P1| = a1. Since the base case for dimension d = 2 has
linear running time, the present algorithm will find a
generalized cut in O(n(log n)d−2).

Finally, for d = 3, Lo, et. al. [8] showed how to find a
ham-sandwich cut for well separated point sets in linear
time. That algorithm is easily adapted to generalized
cuts. Using this as the base case, the algorithm just
described now has running time O(n(log n)d−3).
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by Two-Fans”. Discrete and Computational Geom-
etry
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