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The Embroidery Problem
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Abstract

We consider the problem of embroidering a design pat-
tern, given by a graph G, using a single minimum length
thread. We give an exact polynomial-time algorithm for
the case that G is connected. If G has multiple con-
nected components, then we show that the problem is
NP-hard and give a polynomial-time 2-approximation
algorithm. We also present results for special cases of
the problem with various objective functions.

1 Introduction

Figure 1: Girl
with basket.

An embroidery is a decorative de-
sign sewn onto a fabric using one or
more threads. The artist guides the
thread with a needle as it alternates
between the top and the bottom of
the fabric. The exposed thread on
the top of the fabric is the desired
design; the thread on the bottom of
the design is needed only to inter-
connect the needle holes as the de-
sign is sewn. We study the single-
thread embroidery problem in which
the goal is to minimize the total
length of thread.

Model We require that the com-
plete embroidery must be done with a single continuous
piece of thread and that the thread must form a cycle,
returning to the starting point (where a knot will be
tied). The embroidery problem is graph traversal opti-
mization problem, as we now formally state.

Problem Statement Given a planar euclidean graph
G(V,E), with vertices V and edges E, find a minimum-
length closed tour T with alternating edge types (front
and back), such that front edges exactly cover E (with-
out repitition) and back edges form an arbitrary subset
of the edges of the complete graph on V , with possible
repititions. See Figure 2. We assume that V is a finite
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set of n points in the plane and that E is a set of m

straight line segments joining pairs of points in V . The
length of an edge is its Euclidean length; the total length
of a tour or a set, X, of edges is denoted |X|.

Figure 2: An embroidery graph, with red (solid) edges
representing the front edges, E, of the embroidery de-
sign and blue (dashed) edges representing the back
edges.

We refer to a tour T satisfying the above constraints
as an embroidery tour for G. The front edges of T are
denoted F , the back edges are denoted B. A single
continuous piece of thread following T gives exactly the
desired embroidery design E = F (without repeating
any edge) on the front of the cloth, and the back edges
B of T represent “wasted” thread length. Since the
edges F exactly cover E, the length of any feasible em-
broidery tour is simply |T | = |E| + |B|, so, for given
E, exactly minimizing |T | is equivalent to minimizing
|B|. However, in terms of approximation, the problem,
OPTT , of minimizing |T | is different from the problem,
OPTB , of minimizing |B|.

We also consider the Steiner version of the embroi-
dery problem in which we allow the set V to be aug-
mented by a set of Steiner points that lie along edges
E of the design; i.e., in the Steiner embroidery problem
the set F of front edges must form an exact cover of the
edges E, but each edge e ∈ E may be (exactly) covered
by a set of segments in F , with endpoints that may lie
interior to e.

Related Work The rural postman is most closely re-
lated to our problem: Given an undirected graph G =
(V,E) with edge weights, and a subset E′ ⊆ E, find
a closed walk of minimum weight traversing all edges
of E′ atleast once. The stacker-crane problem is also
similar, but the required edges to be traversed are di-
rected. The main distinction between the embroidery
problem and these related problems is that in the em-
broidery problem the tour is not allowed to traverse two
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Graph G OPTT OPTB

Connected poly-time poly-time
Section 2.1 Section 2.1

Arbitrary NP-hard, 2-apx NP-hard, 3-apx
Section 2.2.1 Section 2.2.2

Indep Segments NP-hard, 1.5-apx, NP-hard, 2-apx
Section 2.3 Section 2.3

Table 1: Summary of results: No Steiner points allowed.

Graph G OPTT OPTB

Connected poly-time poly-time
Section 3.1 Section 3.1

Arbitrary NP-hard, 2-apx, PTAS NP-hard, 3-apx
Section 3.2.1 Section 3.2.2

Table 2: Summary of results with Steiner points.

of the required edges in a row; it must alternate between
the front (specified) and back edges. The rural post-
man has a (Christofides-like) 3/2-approximation [3] and
the stacker-crane has a 9/5-approximation [4]. Biedl [2]
studies the special case of the embroidery problem in
which only “cross-stitches” are used.

Summary of Results Table 1 summarizes our results
on the OPTT and OPTB problems for different types of
input embroidery graphs G: (i) connected, (ii) arbitrary,
with possibly many connected components, and (iii) an
independent set of edges – no two edges of E share an
endpoint (however, the line segments that embed E may
cross arbitrarily). Table 2 lists our results for the Steiner
embroidery problem.

2 Embroidery Without Steiner Points

An embroidery tour T alternates between front edges
and back edges. Hence ∀v ∈ V the number of back
edges incident to v must be exactly equal to the number
of front edges incident to v. See Theorem 1.

Theorem 1 Iff T is an embroidery tour for G(V,E),
then G(V, T ) is connected and ∀v ∈ V : dF (v) = dB(v),
where dF (v) is the degree of vertex v in G(V, F ).

Proof. Forward direction: Since T is embroidery tour
(using single continuous thread) G(V, T ) must be con-
nected. If there exists a vertex v such that dB(v) <

dF (v), by pigeon-hole-principle on entry and exit type
of edges on v, T must have two consecutive front edges
ei, ej ∈ F sharing v, hence contradicting that T is
embroiderable. Similar contradiction holds if dB(v) >

dF (v).

Backward direction: Since G(V, T ) is connected and
dT (v) is even there exists an Euler tour in G(V, T ). Also
we can ensure that this tour has no consecutive front or
back edges, since everytime you enter vertex v using
a front edge ei ∈ F you can leave using a back edge
ej ∈ B and vice versa. This is always possible because
dF (v) = dB(v). Hence this tour is the embroidery tour
T . ¤

2.1 One Connected Component

If G is connected, then the embroidery problem can
be solved as follows: Find a minimum-length set of
back edges B such that the degree requirement ∀v ∈ V :
dB(v) = dE(v) is satisfied. The degree requirement im-
plies that the graph G(V,E∪B) is Eulerian; then, since
G is connected, we know that there is an Euler tour in
G(V,E ∪ B), which can be traversed with alternating
edges (in E, then in B, etc). Since B is minimum-
length, the resulting tour is optimal. Thus, the selec-
tion of an optimal B is exactly the minimum-weight b-
matching problem on V , with vertex weights (degrees)
b(v) = dE(v), ∀v ∈ V , which is solvable in polynomial
time [1].

2.2 Multiple Connected Components

Consider now an arbitrary design G, with possibly many
connected components. As before, we can compute
a minimum-weight b-matching, with vertices weighted
by the degrees, dE(v); however, an optimal b-matching
does not result in a set B of back edges that yields a
complete solution, since the graph G(V,E ∪B) may be
disconnected.

In fact, we show that it is NP-hard to solve OPTT

or OPTB exactly. We do provide, though, a constant-
factor approximation algorithm.

Using a simple reduction from Euclidean TSP, we
show:

Theorem 2 The embroidery problem (either OPTT or
OPTB) is NP-hard for arbitrary graphs G, with many
connected components.

2.2.1 Approximating OPTT

We turn now to approximating OPTT . We define a
new graph G′(V ′, E′), where V ′ is the set of connected
components in G(V,E), and E′ is the set of edges in the
complete graph on V ′. For each edge e(i, j) ∈ E′ , the
weight of the edge w(i, j) = minu∈ Vi,w∈ Vj

dist(u,w).
Let MST be a minimum spanning tree of G′.

Now initialize B to contain a copy of front edges E

and two copies of each MST . Note that each MST edge
is a minimum-weight edge connecting the appropriate
vertices in the two different components. Let Tapx =
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E ∪ B. Hence, ∀v ∈ V, dTapx
(v) ≥ 2 · dE(v). It should

be easy to see that

|Tapx| = 2 · |E| + 2 · |MST |

Theorem 3 Tapx is an embroidery tour for G(V,E)
with |Tapx| ≤ 2 · OPTT .

Proof. By the definition of Tapx, G(V, Tapx) is con-
nected (since it uses the MST edges to connect between
disconnected components) and dTapx

(v) is even. Also
since ∀v ∈ V , dTapx

(v) ≥ 2 · dE(v), we can find an Eu-
ler tour in G(V, Tapx), such that there are no consec-
utive front edges. Note that Tapx may have consecu-
tive back edges ei(vi, v), ej(v, vj) ∈ B at a vertex v, in
which case we can shortcut using e′(vi, vj) and update
Tapx = Tapx ∪ {e′} \ {ei, ej} without increasing |Tapx|
(by triangle inequality). Thus we can convert Tapx to a
tour containing alternate front and back edges to make
it an embroidery tour without increasing its cost.

Also, OPTT = |Topt| ≥ |E| + |MST |, since Topt must
cover all the edges in E and must also span all the dis-
connected components and by definition of MST , it is
the cheapest way to connect the disconnected compo-
nents. Thus, 2 ·OPTT ≥ 2 · (|E|+ |MST |) = |Tapx|. ¤

2.2.2 Approximating OPTB

We start by finding a minimum-weight b-matching BM

of V with weight b(v) = dE(v),∀v ∈ V . Then for all
connected components V1, V2, . . . , Vk in graph G(V,E ∪
BM), we find the MST on graph G′(V ′, E′), as we did
in Section 2.2.1. Now add a copy of each BM edge and
two copies of each MST edge to B. Let Tapx = E ∪ B.
Again, ∀v ∈ V, dTapx

(v) ≥ 2 · dE(v). It is easy to see
that

|B| = |BM | + 2 · |MST |.

Theorem 4 Tapx is an embroidery tour for G(V,E)
with |B| ≤ 3 · OPTB.

Proof. By similar arguments as in the proof of Theo-
rem 7, we can convert Tapx to an embroidery tour with
|B| ≤ |BM |+2 · |MST |. Now, OPTB = |Bopt| ≥ |BM |,
since in Topt, Bopt is one b-matching satisfying b(v) =
dE(v) and BM is a minimum-weight b-matching. Also
OPTB ≥ |MST |, since Topt must span all of the con-
nected components of G(V,E). Note that MST here is
a minimum spanning tree on the connected components
of G(V,E∪BM), which has smaller cost as compared to
the minimum spanning tree on connected components of
G(V,E). Thus, 3·OPTB ≥ |BM |+2·|MST | = |B|. ¤

2.3 Independent Segments

In the case that the edges E do not share endpoints
(i.e., they form a set of possibly intersecting line seg-
ments), OPTT can be approximated using the 3/2-
approximation algorithm for the rural postman: If the

approximating tour uses two consecutive back edges,
then we simply shortcut, replacing the two edges
with one shorter back edge. This results in a 3/2-
approximation for OPTT .

3 Embroidery with Steiner Points

It may be possible to use a shorter thread if we allow a
front edge to be split into two or more subsegments by
placing Steiner points judiciously along it. In fact, by
placing a Steiner point arbitrarily close to an endpoint
(vertex) of a front edge, we can make the length of back
edges arbitrarily close to zero; see Figure 3. We say
that such a Steiner point doubles the vertex where it is
placed.

Figure 3: Placing a Steiner point near a vertex.

3.1 One Connected Component

Lemma 5 An optimal embroidery tour Topt (allowing
Steiner points) for G(V,E) will not have Steiner points
on edges other than those near endpoints that double
vertices.

Proof. If s is a Steiner point interior to an edge e ∈
E, with back edges e(a, s), e(s, b) ∈ B incident to s,
then we can simply replace these two edges with a single
(back) edge e(a, b) (and remove Steiner point s) without
increasing the cost of tour |Topt|. See Figure 4. ¤

Figure 4: An optimal tour T will have no Steiner point
in the middle of an edge.

Lemma 6 Topt will not have two back edges ei, ej ∈ B

incident to a common vertex v ∈ V .

Proof. The argument is similar to the proof of
Lemma 5. ¤

Since an optimal embroidery tour Topt is an Euler cy-
cle (by definition of T ), the sum of front and back edge
degrees for each vertex is even. Thus, all odd degree
vertices v ∈ V (if any present) have one back outgoing
edge and even degree vertices do not have any outgoing
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back edges (Using Lemma 5, 6). Therefore, an optimal
solution is a union of front edges and back edges consti-
tuting a minimum-weight perfect matching edges built
on odd degree vertices. The problem hence reduces to
finding a minimum-weight perfect matching in a com-
plete graph (of odd degree vertices in this case), which
can be solved in time O(n3).

3.2 Multiple Connected Components

It should be clear that the same NP-hardness reduction
for the non-Steiner versionworks even if we allow Steiner
points.

3.2.1 Approximating OPTT

The idea is very similar to Section 2.2.1, ex-
cept that the graph G′(V ′, E′) (defined over dif-
ferent components) has edge weights w(i, j) =
minu∈ G(Vi,E),w∈ G(Vj ,E) dist(u,w),∀e(i, j) ∈ E′ (where
u,w are edges). We refer to this minimum spanning tree
on this new graph G′(V ′, E′) as MSTSt. As before, we
add a copy of front edges, F in this case (since each edge
e from E that contains one or more Steiner points, gets
split and is put as two ore more segments in F ) and two
copies of each MSTSt edge to B. Note that |F | = |E|,
as F exactly covers E. Let Tapx = F ∪ B. Thus,

|Tapx| = 2 · |E| + 2 · |MSTSt|

Theorem 7 Tapx is an embroidery tour (allowing
Steiner points) for G(V,E) with |Tapx| ≤ 2 · OPTT .

Proof. Only thing to note here is that everytime we
introduce a Steiner point, we create a new vertex v′

with dF (v′) = 2. Since the introduction of Steiner point
is only because of some MSTSt edge and because we
double the MSTSt edge, dTapx

(v′) ≥ 2 · dE(v′) for all
new Steiner points v′. Excluding other details (which
remain same from the proof of Theorem 3), Tapx can be
converted to an embroidery tour without increasing its
cost.

Also, as before, OPTT = |Topt| ≥ |E| + |MSTSt|.
Thus, 2 · OPTT ≥ 2 · (|E| + |MSTSt|) = |Tapx|. ¤

3.2.2 Approximating OPTB

This idea is also very similar to Section 2.2.2, except
that it uses perfect matching M between odd degree
vertices in G(V,E) instead of BM . It also uses MSTSt

defined in Section 3.2.1. We add a copy of each M

edge and two copies of each MSTSt edge to B. Let
Tapx = F ∪B, where F is the front edge cover of Steiner
point splitted edges in E. Thus,

|B| = |M | + 2 · |MSTSt|

Theorem 8 Tapx is an embroidery tour (allowing
Steiner points) for G(V,E) with |B| ≤ 3 · OPTB.

Proof. With similar arguments as in the proof of The-
orem 7, we can convert Tapx to an embroidery tour with
|B| ≤ |BM | + 2 · |MST |. Now, OPTB = |Bopt| ≥ |M |,
since in Topt, Bopt is one matching beteen odd degree
vertices in G(V,E) and M is the minimum weight per-
fect matching. Also OPTB ≥ |MSTSt|, since Topt must
span all the connected components of G(V,E). Thus,
3 · OPTB ≥ |M | + 2 · |MSTSt| = |B|. ¤

3.3 A PTAS

By using the m-guillotine method for geometric network
approximation, we are able to obtain a PTAS for the
problem:

Theorem 9 The embroidery problem with Steiner
points and an arbitrary input graph G has a PTAS for
OPTT .

3.4 OPTSt vs OPTNSt

Here we analyse how much one actually gains by allow-
ing Steiner points to be inserted in front edges. It turns
out that OPTSt i.e. |Topt| for the Steiner case is atleast
as big as half of OPTNst i.e. |Topt| for non-Steiner case.

Theorem 10 OPTSt ≥
1
2OPTNSt.

Proof of Theorem 10 can be found in the Appendix.
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Appendix

Theorem 10 is proved below.

Figure 5: Segment h represents an edge of MSTSt. Ver-
tices of edge h are points in V or Steiner points.

Proof. Consider the MSTSt built on connected components
of embroidery pattern.

First, OPTSt ≥ |F | + |MSTSt| (see Theorem 7). Second,
any possible solution of the non-Steiner problem is greater
or equal to the OPTNSt.

Add a copy of each front edge and two copies of each
MSTSt edge h to B. Consider a solution S consisting of
F ∪ B. We modify S (or rather B) to make it a tour which
does not use any Steiner points without increasing its cost
as below:

Figure 6: h connects a vertex v and a Steiner point s.

1. If h ∈ MSTSt connects two vertices of graph G, do
nothing.

2. Consider a case when h connects a vertex v ∈ V of
graph G with a Steiner point s (see Figure 6 ). If there
are no more Steiner points on ab add av and vb and
remove ab and two copies of h from B. Notice that
as + h ≥ av and bs + h ≥ bv. Thus, av + vb ≤ 2h + ab.

If there are several Steiner points, s1, s2, ..., sk on
ab and v1, v2, ..., vk are corresponding points of dif-
ferent connected components, connect them in cycle
with ab as shown in Figure 7 . Add to B edges
av1, v1v2, . . . , vk−1vk, vkb and remove ab and two copies
of h1, h2, . . . , hk. Notice that:

as1 + h1 ≥ av1,

h1 + s1s2 + h2 ≥ v1v2,

...,

hk−1 + sk−1sk + hk ≥ vk−1vk,

Figure 7: MSTSt edges from several connected compo-
nents joining a single edge ab in E.

hk + skb ≥ vkb.

From these inequalities follows

av1 + v1v2 + ... + vk−1vk + vkb ≤

≤ 2(h1 + h2 + ... + hk−1 + hk) + ab.

3. If both ends of h are Steiner points, h can be moved in
parallel to edges it connects until it hits a vertex v ∈ V

with one of its ends. Hence this case is reduced to one
of the previous cases.

It is easy to verify that S is still connected with all vertices
having an even degree and degree of back edges at any vertex
is atleast as much as the degree of front edges. Thus S can be
converted to an embroidery tour using ideas in Section 2.2.1.

|S| ≤ 2 · |F | + 2 · |MSTSt| and |S| ≥ OPTNSt. Hence,
2(|F | + |MSTSt|) ≥ OPTNSt.

Therefore, OPTSt ≥
1

2
OPTNSt. ¤
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