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Abstract

An `22 metric is a metric ρ such that
√

ρ can be em-
bedded isometrically into Rd endowed with Euclidean
norm, and the minimal possible d is the dimension as-
sociated with ρ. A dimension reduction of an `22 metric
ρ is an embedding of ρ into another `22 metric µ so that
distances in µ are similar to those in ρ and moreover,
the dimension associated with µ is small. Much of the
motivation in investigating dimension reductions in `22
comes from a result of Goemans which shows that if such
metrics have good dimension reductions, then they em-
bed well into `1 spaces. This in turn yields a rounding
procedure to a host of semidefinite programming with
good approximation guarantees.

In this work we show that there is no dimension re-
duction `22 metrics in the following strong sense: for
every function D(n) and for every n there exists an n
point `22 metric ρ such that for all embeddings of ρ into
an `22 metric µ with distortion at most D(n), the asso-
ciated dimension of µ is at least n − 1. This stands in
striking contrast to the Johnson Lindenstrauss lemma
which provides a logarithmic dimension reduction for `2
metrics.

1 Introduction

The theory of finite metric spaces has attracted a lot
of attention from algorithm designers in recent years.
In fact, many substantial steps in approximation algo-
rithms were achieved using embeddings of one metric
space into another and estimating the distortion of the
embedding.

We quickly review the needed background. Let f :
(X, d) → (X ′, d′) be a mapping from metric space (X, d)
into metric space (X ′, d′). The distortion of f is the
minimum D such that α · d(x, y) ≤ d′(f(x), f(y)) ≤
D · αd(x, y) holds for some α ≥ 0 and for any x, y ∈ X.

One of the most useful ways embedding results are ap-
plied is in the context of Linear Program and Semidef-
inite Programming relaxations for combinatorial prob-
lems. By viewing optimal solutions of such relaxations
as finite metric spaces and then embedding these metric
spaces with low distortion into `1 one effectively obtains
a rounding procedure (see [12, 7, 14]), namely, a proce-
dure that maps a set of vectors into a {0, 1} assignment.
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The groundbreaking work of Arora, Rao and Vazirani
[4] used this idea to provide an improved approximation
of O(

√
log n) to Sparsest Cut.

Metric spaces emerging from semidefinite relaxations
can be typically described as follows. Consider a finite
set of point in Rp endowed with the square Euclidean
distance, that is, for vectors v1, . . . ,vn ∈ Rp the result-
ing distance function is dij = ‖vi − vj‖2. A distance
function d obtained this is called an `22 distance func-
tions. If in addition d satisfies triangle inequalities, we
say that d is an `22 metric, or a Negative Type Metric.
Notice that semidefinite relaxations may enforce such
(linear) constraints.

Unlike `p metrics, i.e., metrics that embed in `p space
with no distortion, the class of `22 metrics does not in-
herit the structure of a host normed space. This, to
a great extent, explains why analyzing such metrics
proved to be notoriously hard. The aforementioned re-
sult of Arora et al. [4], while not directly about met-
ric spaces, shows that `22 metrics are well embeddable
into `1 and `2 in some appropriately defined average
sense. The result was later extended to show that
every `22 metric is embeddable into `1 with distortion
O(
√

log n · log log n) [3]. Finding the smallest distor-
tion needed to embed such metrics in `1 has become
an intriguing open question, attracting attention from
both geometers as well as complexity theorists. The
best lower bound known so far is due to Khot and Vish-
noi [9] that show that Ω(log log n) distortion is required.

Another theme of interest in the theory of metric
spaces is dimension reduction: to what extent can the
dimension associated with a metric be reduced without
changing the distances by much? Such reductions are
well understood in Euclidean space. While represent-
ing the metric of n points in Euclidean space isomet-
rically requires dimension n − 1, much less is sufficient
for near isometries. In a seminal paper [8], Johnson
and Lindenstrauss show that every n-point set in `2 can
be embedded into O(log n)-dimensional Euclidean space
with constant distortion. Alon [2] recently showed that
this dimension is essentially the best possible. Explor-
ing the possibility of a similar phenomenon in `1 spaces,
Brinkman and Charikar [5] and later Lee and Naor [11]
showed that there is no dimension reduction in these
spaces: they exhibited an n point metric in `1 such that
embedding it with constant distortion in m-dimensional
`1 space is only possible for m = nΩ(1).

The following result due to M. Goemans presented
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in a workshop on methods in discrete mathematics [6]
relates the themes distortion and dimension, with re-
spect to `22 metrics. As such, it suggested an alternative
avenue to low-distortion embeddings for such metrics.
First, we need a slight restriction in the definition of
the metrics spaces in question.

Definition 1 A distance function on n points is called
NEGsym if there are vectors v1,v2, . . . ,vn ∈ Rp such
that dij = ‖vi−vj‖2, and ‖x−y‖2+‖z−y‖2 ≥ ‖x−z‖2

for all x, y, z ∈ {±vi}i. The smallest possible p above is
the dimension associated with d.

Notice that NEGsym metrics are special cases of `22 met-
rics. We also observe that since ‖x − y‖2 + ‖z − y‖2 −
‖x − z‖2 = 2(x − y) · (z − y), the condition above says
that (x − y) · (z − y) ≥ 0, i.e., no three points among
{±vi}i span an obtuse angle. Similarly to `22 metrics,
it is possible to optimize a linear objective functions in
the distances over NEGsym metrics.

Theorem 1 (Goemans, 2000) Every NEGsym met-
ric on p dimension can be embedded into `2 with distor-
tion O(

√
p).

Notice that if one could get a logarithmic dimen-
sion reduction for NEGsym metrics á la Johnson-
Lindenstrauss, then Theorem 1 would imply that
such metrics are embeddable into `2 with distortion
O(
√

log n). In fact, it follows from [13] that applying
Johnson Lindenstrauss lemma for an `22 metric would
result in a low-dimensional `22 metric that cannot vio-
late triangle inequality by a large margin. So it would
seem reasonable to expect that such dimension reduc-
tions are possible. An O(

√
log n) distortion achieved

this way would improve the results of Arora, Lee and
Naor [3], and would greatly simplify [4, 3], being based
on purely geometrical principles rather than combina-
torial and geometrical ones. This question of whether
such dimension reductions exist was raised in a work-
shop on metric geometry at Texas A&M, Summer 2006
[1].

In this work we show that there is no dimension re-
duction in `22 (or even for NEGsym) in a strong sense:
whenever the distortion depends only on the number
of points, one cannot reduce the dimension below the
trivial n− 1. Specifically, we show

Theorem 2 For any real function D(n), there exists
an n-point metric space X in `22 (or NEGsym) such
that for every metric space Y in `22 that is associated
with less than n − 1 dimension, the distortion required
for embedding X into Y is greater than D(n).

2 The construction

Recall that if ρ is an `22 metric then
√

ρ is a metric that is
obtained by taking points in Euclidean space where no

three of them spans an obtuse angle. Therefore, dimen-
sionality reduction in `22 metrics amounts to dimension-
ality reduction of a set of points in Euclidean space that
span no obtuse angle, with the additional requirement
that the image of the points do not span such angles as
well.

The previous results on the minimum required dimen-
sion of a metric were due to Brinkman and Charikar [5]
and to Lee and Naor [11] in the `1 case.

An obvious first attempt would be to use random pro-
jections as in the Johnson Lindenstrauss lemma. Doing
so certainly preserve distances approximately, and in
fact allows for only small changes in angles: the sine
of the angles change by an arbitrary small factor [13];
but that is not strong enough when the angles in ques-
tion are close to π/2. Indeed, it is easy to see that
under a random projection a right angle will become
obtuse with probability 1/2. In particular, the Johnson-
Lindenstrauss Lemma itself is not a good approach to
the question of dimension reduction for `22 metrics. With
this in mind, it is not surprising that the bad example
we exhibit contains many right angles.

Let c > 1 be a constant, let p0 = − 1
2

∑n
i=1 ci−1ei,

and recursively define

pj = pj−1 + cj−1ej.

Let X(n, c) be the (n+1)-point metric space given by
the squared Euclidean distances between the points pi.
Notice that X(n, c) is simply the line metric on points
spaced at intervals with lengths that increase exponen-
tially (as power of c). Further, since all the pis lie on
vertices of a box centred at the origin, no three points
among ±pi span an obtuse angle. Therefore X(n, c) is
a NEGsym metric. We will show that there is a large
enough constant c depending on D, such that in every
embedding of X(n, c) with distortion ≤

√
D(n) into `2

the vectors f(pi)−f(pi−1) are arbitrarily close to being
orthogonal. Since a set of vectors that are sufficiently
close to being orthogonal must have full dimension, the
dimension lower bound then follows.

Let f be an embedding from {p0,p1, . . . ,pn} into Rd,
and let α be a positive number such that for every i, j, k

‖pi − pj‖ ≤ ‖f(pi)− f(pj)‖ ≤ α‖pi − pj‖,

and
(f(pi)− f(pj)) · (f(pk)− f(pj)) ≥ 0.

Denote the vector f(pi)−f(pi−1) by wi. Much of the
argument we need is captured by the following lemma
bounding the angles between the vectors wis.

Lemma 3 For i 6= j, |wi ·wj| ≤ α
c−1‖wi‖‖wj‖

Proof. Assume without loss of generality that i < j.
Focusing on the points pi−1, pi and pj we get that
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0 ≤ (f(pi−1)− f(pi)) · (f(pj)− f(pi)) =

−wi ·
( j∑

k=i+1

wk

)
,

therefore

wi ·wj ≤ −wi ·
( j−1∑

k=i+1

wk

)
.

The distortion condition implies that ‖wj‖ ≥ cj and
that ‖wk‖ ≤ αck for every k. Therefore

wi ·wj ≤ −wi ·
( j−1∑

k=i+1

wk

)
≤ ‖wi‖

j−1∑
k=i+1

αck−1 ≤

α‖wi‖cj/(c− 1) ≤ α‖wi‖‖wj‖/(c− 1). (1)

To lower bound wi ·wj we consider the angle between
the same three points, with i − 1 as the center point.
We get

0 ≤ (f(pi)− f(pi−1)) · (f(pj)− f(pi−1)) =

wi ·
( j∑

k=i

wk

)
.

Now we have

wi ·wj ≥ −wi ·
( j−1∑

k=i

wk

)
and similarly to (1)

wi ·wj ≥ −wi ·
( j−1∑

k=i

wk

)
≥ −‖wi‖

j−1∑
k=i

αck−1 ≥

−α‖wi‖cj/(c− 1) ≥ −α‖wi‖‖wj‖/(c− 1).

We refer the reader to Figure 1 which illustrates the
geometrical intuition of the lemma.

�

Given any function D(n), we set c = n
√

D(n) + 1.
Assume that X(n, c) can be embedded into an `22 metric
with dimension less than n and distortion at most D(n).
Then there must be a function f from {p0, . . . ,pn} that
satisfies the conditions of Lemma 3 with α =

√
D(n)

and the vectors wis are in Rd with d < n. Let wi
′ =

wi/‖wi‖ be the normalized vector wi. Then

|wi
′ ·wj

′| = |wi ·wj|/‖wi‖‖wj‖ ≤

α

c− 1
=

α

n
√

D(n)
= 1/n.

f(pi)

f(pj)

f(pj−1)

f(pi−1)

Figure 1: f(pj−1) and f(pj) must lie in the slab between
f(pi−1) and f(pi); since wj = f(pj)−f(pj−1) has norm
much larger than the width of the slab, wi and wj must
be almost orthogonal.

But now we have a set of n unit vectors which are
almost orthogonal. It is a well known fact that such
a set must have full rank; for completeness we show it
here. Let A be the gram matrix of wi’s that is Ai,j =
wi

′wj
′. Then Aii = 1 and |Ai,j | ≤ 1/n for i 6= j. Thus,

‖A− I‖∞ < 1
n , and for any vector x 6= 0,

‖Ax‖∞ ≥ ‖x‖∞ − ‖(A− I)x‖∞ ≥

‖x‖∞ − (n− 1)(1/n)‖x‖∞ > 0.

So A is nonsingular and therefore the dimension
spanned by the wi

′ (and so by their original counter-
parts wi) is n. We have therefore shown that

d ≥ n = |X(n, c)| − 1

which proves Theorem 2.
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