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Abstract

An `22 metric is a metric ρ such that
√
ρ can be

embedded isometrically into Rd endowed with Eu-
clidean norm, and the minimal possible d is the di-
mension associated with ρ. A dimension reduction
of an `22 metric ρ is an embedding of ρ into another
`22 metric µ so that distances in µ are similar to
those in ρ and moreover, the dimension associated
with µ is small. Much of the motivation in inves-
tigating dimension reductions in `22 comes from a
result of Goemans which shows that if such metrics
have good dimension reductions, then they embed
well into `1 spaces. This in turn yields a rounding
procedure to a host of semidefinite programming
with good approximation guarantees.

In this work we show that there is no dimension
reduction `22 metrics in the following strong sense:
for every function D(n) and for every n there exists
an n point `22 metric ρ such that for all embeddings
of ρ into an `22 metric µ with distortion at most
D(n), the associated dimension of µ is at least n−1.
This stands in striking contrast to the Johnson Lin-
denstrauss lemma which provides a logarithmic di-
mension reduction for `2 metrics. Further, it shows
that reducing dimension in `22 is even harder than
doing so in `1 spaces.

1 Introduction

The theory of finite metric spaces has attracted a
lot of attention from algorithm designers in recent
years. In fact, many substantial steps in approxi-
mation algorithms were achieved using embeddings
of one metric space into another and estimating the
distortion of the embedding.

We quickly review the needed background. Let
f : (X, d) → (X ′, d′) be a mapping from metric
space (X, d) into metric space (X ′, d′). The distor-
tion of f is the minimum D such that α · d(x, y) ≤
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d′(f(x), f(y)) ≤ D · αd(x, y) holds for some α ≥ 0
and for any x, y ∈ X.

One of the most useful ways embedding results
are applied is in the context of Linear Program and
Semidefinite Programming relaxations for combina-
torial problems. By viewing optimal solutions of
such relaxations as finite metric spaces and then
embedding these metric spaces with low distortion
into `1 one effectively obtains a rounding procedure
(see [13, 7, 15]), namely, a procedure that maps a
set of vectors into a {0, 1} assignment. The ground-
breaking work of Arora, Rao and Vazirani [4] used
this idea to provide an improved approximation of
O(
√

log n) to Sparsest Cut.
Metric spaces emerging from semidefinite relax-

ations can be typically described as follows. Con-
sider a finite set of point in Rp endowed with
the square Euclidean distance, that is, for vectors
v1, . . . ,vn ∈ Rp the resulting distance function is
dij = ‖vi − vj‖2. A distance function d obtained
this is called an `22 distance functions. If in addition
d satisfies triangle inequalities, we say that d is an
`22 metric, or a Negative Type Metric. Notice that
semidefinite relaxations may enforce such (linear)
constraints.

Unlike `p metrics, i.e., metrics that embed in `p
space with no distortion, the class of `22 metrics does
not inherit the structure of a host normed space.
This, to a great extent, explains why analyzing such
metrics proved to be notoriously hard. The afore-
mentioned result of Arora et al. [4], while not di-
rectly about metric spaces, shows that `22 metrics
are well embeddable into `1 and `2 in some appro-
priately defined average sense. The result was later
extended to show that every `22 metric is embed-
dable into `1 with distortion O(

√
log n · log log n)

[3]. Finding the smallest distortion needed to em-
bed such metrics in `1 has become an intriguing
open question, attracting attention from both ge-
ometers as well as complexity theorists. The best
lower bound known so far is due to Khot and Vish-
noi [10] that show that Ω(log log n) distortion is re-
quired.
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Another theme of interest in the theory of met-
ric spaces is dimension reduction: to what extent
can the dimension associated with a metric be re-
duced without changing the distances by much?
Such reductions are well understood in Euclidean
space. While representing the metric of n points
in Euclidean space isometrically requires dimension
n − 1, much less is sufficient for near isometries.
In a seminal paper [9], Johnson and Lindenstrauss
show that every n-point set in `2 can be embed-
ded into O(log n)-dimensional Euclidean space with
constant distortion. Alon [2] recently showed that
this dimension is essentially the best possible. Ex-
ploring the possibility of a similar phenomenon in
`1 spaces, Brinkman and Charikar [5] and later Lee
and Naor [12] showed that there is no dimension re-
duction in these spaces: they exhibited an n point
metric in `1 such that embedding it with constant
distortion in m-dimensional `1 space is only possible
for m = nΩ(1).

The following result due to M. Goemans pre-
sented in a workshop on methods in discrete mathe-
matics [6] relates the themes distortion and dimen-
sion, with respect to `22 metrics. As such, it sug-
gested an alternative avenue to low-distortion em-
beddings for such metrics. First, we need a slight
restriction in the definition of the metrics spaces in
question.

Definition 1 A distance function on n points is
called NEGsym if there are vectors v1,v2, . . . ,vn ∈
Rp such that dij = ‖vi−vj‖2, and ‖x− y‖2 + ‖z−
y‖2 ≥ ‖x−z‖2 for all x, y, z ∈ {±vi}i. The smallest
possible p above is the dimension associated with d.

Notice that NEGsym metrics are special cases of `22
metrics. We also observe that since ‖x− y‖2 + ‖z−
y‖2−‖x−z‖2 = 2(x−y)·(z−y), the condition above
says that (x− y) · (z − y) ≥ 0, i.e., no three points
among {±vi}i span an obtuse angle. Similarly to `22
metrics, it is possible to optimize a linear objective
functions in the distances over NEGsym metrics.

Theorem 1 (Goemans, 2000) Every NEGsym
metric on p dimension can be embedded into `2 with
distortion O(

√
p).

Notice that if one could get a logarithmic dimen-
sion reduction for NEGsym metrics á la Johnson-
Lindenstrauss, then Theorem 1 would imply that
such metrics are embeddable into `2 with distortion

O(
√

log n). In fact, it follows from [14] that apply-
ing Johnson Lindenstrauss lemma for an `22 met-
ric would result in a low-dimensional `22 metric that
cannot violate triangle inequality by a large margin.
So it would seem reasonable to expect that such
dimension reductions are possible. An O(

√
log n)

distortion achieved this way would improve the re-
sults of Arora, Lee and Naor [3], and would greatly
simplify [4, 3], being based on purely geometrical
principles rather than combinatorial and geometri-
cal ones. This question of whether such dimension
reductions exist was raised in a workshop on metric
geometry at Texas A&M, Summer 2006 [1].

In this work we show that there is no dimension
reduction in `22 (or even for NEGsym) in a strong
sense: whenever the distortion depends only on the
number of points, one cannot reduce the dimension
below the trivial n− 1. Specifically, we show

Theorem 2 For any real function D(n), there ex-
ists an n-point metric space X in `22 (or NEGsym)
such that for every metric space Y in `22 that is as-
sociated with less than n− 1 dimension, the distor-
tion required for embedding X into Y is greater than
D(n).

2 The construction

Recall that if ρ is an `22 metric then
√
ρ is a met-

ric that is obtained by taking points in Euclidean
space where no three of them spans an obtuse an-
gle. Therefore, dimensionality reduction in `22 met-
rics amounts to dimensionality reduction of a set of
points in Euclidean space that span no obtuse an-
gle, with the additional requirement that the image
of the points do not span such angles as well.

The previous results on the minimum required
dimension of a metric were due to Brinkman and
Charikar [5] and to Lee and Naor [12] in the `1 case.

An obvious first attempt would be to use ran-
dom projections as in the Johnson Lindenstrauss
lemma. Doing so certainly preserve distances ap-
proximately, and in fact allows for only small
changes in angles: the sine of the angles change
by an arbitrary small factor [14]; but that is not
strong enough when the angles in question are close
to π/2. Indeed, it is easy to see that under a ran-
dom projection a right angle will become obtuse
with probability 1/2. In particular, the Johnson-
Lindenstrauss Lemma itself is not a good approach
to the question of dimension reduction for `22 met-
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rics. With this in mind, it is not surprising that the
bad example we exhibit contains many right angles.

Let c > 1 be a constant, let p0 = − 1
2

∑n
i=1 c

i−1ei,
and recursively define

pj = pj−1 + cj−1ej.

Let X(n, c) be the (n + 1)-point metric space
given by the squared Euclidean distances between
the points pi. Notice that X(n, c) is simply the line
metric on points spaced at intervals with lengths
that increase exponentially (as power of c). Fur-
ther, since all the pis lie on vertices of a box cen-
tred at the origin, no three points among ±pi span
an obtuse angle. Therefore X(n, c) is a NEGsym
metric. We will show that there is a large enough
constant c depending on D, such that in every em-
bedding of X(n, c) with distortion ≤

√
D(n) into

`2 the vectors f(pi) − f(pi−1) are arbitrarily close
to being orthogonal. Since a set of vectors that are
sufficiently close to being orthogonal must have full
dimension, the dimension lower bound then follows.

Let f be an embedding from {p0,p1, . . . ,pn} into
Rd, and let α be a positive number such that for
every i, j, k

‖pi − pj‖ ≤ ‖f(pi)− f(pj)‖ ≤ α‖pi − pj‖,

and

(f(pi)− f(pj)) · (f(pk)− f(pj)) ≥ 0.

Denote the vector f(pi) − f(pi−1) by wi. Much
of the argument we need is captured by the follow-
ing lemma bounding the angles between the vectors
wis.

Lemma 3 For i 6= j, |wi ·wj| ≤ α
c−1‖wi‖‖wj‖

Proof. Assume without loss of generality that i <
j. Focusing on the points pi−1, pi and pj we get
that

0 ≤ (f(pi−1)− f(pi)) · (f(pj)− f(pi)) =

−wi ·
( j∑
k=i+1

wk

)
,

therefore

wi ·wj ≤ −wi ·
( j−1∑
k=i+1

wk

)
.

The distortion condition implies that ‖wj‖ ≥ cj

and that ‖wk‖ ≤ αck for every k. Therefore

wi ·wj ≤ −wi ·
( j−1∑
k=i+1

wk

)
≤ ‖wi‖

j−1∑
k=i+1

αck−1 ≤

α‖wi‖cj/(c− 1) ≤ α‖wi‖‖wj‖/(c− 1). (1)

To lower bound wi ·wj we consider the angle be-
tween the same three points, with i−1 as the center
point. We get

0 ≤ (f(pi)− f(pi−1)) · (f(pj)− f(pi−1)) =

wi ·
( j∑
k=i

wk

)
.

Now we have

wi ·wj ≥ −wi ·
( j−1∑
k=i

wk

)
and similarly to (1)

wi ·wj ≥ −wi ·
( j−1∑
k=i

wk

)
≥ −‖wi‖

j−1∑
k=i

αck−1 ≥

−α‖wi‖cj/(c− 1) ≥ −α‖wi‖‖wj‖/(c− 1).

We refer the reader to Figure 1 which illustrates
the geometrical intuition of the lemma. �

Given any function D(n), we set c = n
√
D(n)+1.

Assume that X(n, c) can be embedded into an `22
metric with dimension less than n and distortion
at most D(n). Then there must be a function f
from {p0, . . . ,pn} that satisfies the conditions of
Lemma 3 with α =

√
D(n) and the vectors wis

are in Rd with d < n. Let wi
′ = wi/‖wi‖ be the

normalized vector wi. Then

|wi
′ ·wj

′| = |wi ·wj|/‖wi‖‖wj‖ ≤

α

c− 1
=

α

n
√
D(n)

= 1/n.

But now we have a set of n unit vectors which
are almost orthogonal. It is a well known fact that
such a set must have full rank; for completeness we
show it here. Let A be the gram matrix of wi’s that
is Ai,j = wi

′wj
′. Then Aii = 1 and |Ai,j | ≤ 1/n
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for i 6= j. Thus, ‖A− I‖∞ < 1
n , and for any vector

x 6= 0,

‖Ax‖∞ ≥ ‖x‖∞ − ‖(A− I)x‖∞ ≥

‖x‖∞ − (n− 1)(1/n)‖x‖∞ > 0.

So A is nonsingular and therefore the dimension
spanned by the wi

′ (and so by their original coun-
terparts wi) is n. We have therefore shown that

d ≥ n = |X(n, c)| − 1

which proves Theorem 2.

3 Discussion

We have shown that dimension reduction in `22 met-
rics, as well as in NEGsym metrics, is impossible in
general. An interesting question the remains open
is whether a relaxed notion of dimension reduction
may still hold. By that we mean that the distortion
of the mapping is required to be small on average.
More precisely, assume without loss of generality
that we deal with a mapping f that does not ex-
pand distances. Then the average distortion of f is
the average distances divided by the average dis-
tances in the image of the f (see [16]). Such a
notion seems especially relevant here: if there are
dimension reductions in this sense, then applying
Goeman’s theorem we would still get low (average)
distortion embeddings of `22 metrics into `2. This
would still be enough in order to achieve a good ap-
proximation for Sparsest Cut in the uniform case
(the case that is dealt with in [4]).

We currently cannot preclude the possibility of
dimension reduction on average, even with as little
as O(log n) dimensions. To demonstrate how dif-
ferent this question is from the more standard one
we answer above, notice that for the example we
supplied, one dimension suffices in order to achieve
small average distortion. Indeed, since all distances
are dominated by distances to pn+1, it is enough
to map pn+1 to the origin, and all other points to
a single point of distance cn−1 from it. Instead, we
suggest considering the usual line metric with inter-
val of equal length in order to achieve the stronger
lower bound that will apply to dimension reductions
on average. Interestingly, this gives rise to ques-
tions about the trace of a positive semidefinite ma-
trix that satisfies certain linear conditions on some
of its minors. Such a setting is somewhat similar
in flavor to the setting of Alon’s lower bound for
dimension reductions in `2 [2].
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Appendix

A Embedding of the Path

f(pi)

f(pj)

f(pj−1)

f(pi−1)

Figure 1: f(pj−1) and f(pj) must lie in the slab
between f(pi−1) and f(pi); since wj = f(pj) −
f(pj−1) has norm much larger than the width of
the slab, wi and wj must be almost orthogonal.

B Goemans’s Theorem

In this section we present the proof of the theorem of
Goemans. (the result was never published before.) We
also discuss the connection of this Theorem and John’s
theorem[8] and the possibility of extension of the proof
to subsets of `22 which are close to a metric.

Let d be a NEGsym metric in p dimensions and S =
{±vi}i, the set of vectors in the representation of d.
Now, let E = {x|xtQx ≤ 1} be the minimum ellipsoid
containing S and for any x ∈ Rp, g(x) = Q−1/2x. 1

Our goal is to show that

1

2
≤ ‖g(y)− g(z)‖

‖y − z‖2 ≤
√
p

2
.

In particular, g has distortion
√
p.

To gain a geometric intuition for the construction, it
is useful to consider the situation where S is a subset of
the vertices of a box. In this case the embedding simply
squares the lengths of edges a bound of

√
p on the dis-

tortion for this case is readily implied. When one deals
with a general S, applying Q−1/2 is in some sense the
best analogue to this squaring operation. The interest-
ing part of the proof is to use the local condition on S
in order to obtain a similar bound on the distortion.

The volume of the ellipsoid E is
detQ−1/2Vol(B(0, 1)) and so the optimum of the
following is the matrix Q associated with the ellipsoid
of minimal volume.

min log detQ−1

subject to:

xtQx ≤ 1 for all x ∈ S

Q � 0.

By the Lagrangian dual (see [11] for example) it fol-
lows that for the optimal solution Q−1 =

P
x∈S λxxx

t

for some nonnegative real numbers λx, and moreover
λx = 0 if xtQx < 1.

For a vector r ∈ Rp we define a parameter

η(r) = max
y∈S

r · y
‖r‖

that essentially looks at the extremes of projections of
S according to a direction. We first show that η upper
bounds the Lipschitz constant of g. According to the
Lagrangian conditions

p = Tr(Q−1Q) =
X
x∈S

λxTr(xx
tQ) =

X
x∈S

λxx
tQx =

X
x∈S

λx

1By Q−1/2 we mean the Cholesky decomposition of Q−1,
namely the matrix M for which Q−1 = MMt.
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Now for an arbitrary vector a,

‖g(a)‖2 = atQ−1a =
X
x∈S

λx(x·a)2 ≤
“X

x∈S

λx

”
max
x∈S

(x·a)2 =

p ·max
x∈S

(x · a)2 = p · η2(a)‖a‖2,

hence
‖g(a)‖
‖a‖ ≤ √p · η(a). (2)

Next we show that on vectors of the form y−z, where
y, z ∈ S, η is exactly half the norm. First we show
that all vectors in S have the same norm. Indeed, let
x,w ∈ S, then ‖w‖2−‖x‖2 = (w−x)(−w−x) ≥ 0. By
symmetry ‖w‖ = ‖x‖. Now, let y, z ∈ S, we have

y · (y−z) = ‖y‖2−y ·z = ‖z‖2−y ·z = −z · (y−z). (3)

Let x be any point in S. Triangle inequality condition
implies that

y(y − z) ≥ x(y − z) ≥ z(y − z). (4)

Using Equations (3) and (4), we get

max
x∈S
|x · (y − z)| = y · (y − z) = −z(y − z),

and thus maxx∈S |x · (y−z)| = ‖y−z‖2/2 and we get

η(y − z) =
‖y − z‖

2
. (5)

Combining Inequality (2) and Equation (5) it follows
that

‖g(y)− g(z)‖
‖(y − z)‖2 =

‖g(y − z)‖
‖y − z‖ ·

1

2η(y − z) ≤

√
p · η(y − z) · 1

2η(y − z) ≤
√
p

2
.

and the expansion of g is thus bounded.

Remark 1 The fact that all the angles are not obtuse
is used in order to derive Equation (5) (and only there).
Relaxing this condition and allowing some angles to be
as large as π/2 + ε for some ε > 0, one can show that
η(y − z) can be arbitrarily larger than ‖y − z‖ and the
bound above would not be achieved.

We now turn to analyze the contraction. For all vec-
tors b

‖b‖2 ≤
p
bt ·Q−1b

p
btQb = ‖g(b)‖‖g−1(b)‖,

(using Cauchy Schwartz inequality) and setting b to
be y − z, we get

‖g(y)− g(z)‖
‖(y − z)‖2 ≥ 1/‖g−1(y − z)‖ =

1/
q

(Q1/2y −Q1/2z) · (Q1/2y −Q1/2z) ≥ 1/2.

To put thing in broader context we relate the above
embedding to a well known result of John [8] that shows
that every normed space (Rp, ‖ · ‖) embeds linearly into
Euclidean space with distortion at most

√
p. This is

achieved by taking the minimal ellipsoid containing the
unit ball of the norm ‖ · ‖ and showing that the scaled
down version (by

√
p) of this ellipsoid is contained in the

unit ball. The linear embedding in John’s theorem is the
mapping that maps the containing ellipsoid to the unit
ball. Here is the connection to our setting. Let R be the
convex hull of S and let R∗ = {y|x · y ≤ 1 for all x ∈
R}. It can be shown that the embedding g in Theorem
1 is precisely the embedding of John’s theorem when
applied to (the norm whose unit ball is) R∗.


