CCCG 2008, Montréal, Québec, August 13-15, 2008

Core-Preserving Algorithms

Hamid Zarrabi-Zadeh*

Abstract

We define a class of algorithms for constructing coresets
of (geometric) data sets, and show that algorithms in
this class can be dynamized efficiently in the insertion-
only (data stream) model. As a result, we show that for
a set of points in fixed dimensions, additive and mul-
tiplicative e-coresets for the k-center problem can be
maintained in O(1) and O(k) time respectively, using a
data structure whose size is independent of the size of
the input. We also provide a faster streaming algorithm
for maintaining e-coresets for fat extent-related prob-
lems such as diameter and minimum enclosing ball.

1 Introduction

The data stream model of computation has recently
attracted considerable interest due to growing applica-
tions involving massive data sets. In this model, data is
presented to the algorithm one by one as a stream over
time, and the algorithm must compute a function over
the stream in only one pass, using a limited amount of
storage.

The coreset framework is a fundamental tool for de-
signing algorithms in the data stream model as it al-
lows to compute a function approximately over the data
stream by keeping only a small-size “sketch” of the in-
put, called a coreset. Roughly speaking, a subset @ of
the input set P is called an e-coreset of P with respect
to an optimization problem, if solving the optimization
problem on @ gives an e-approximate solution to the
problem on the whole input set, P.

Several streaming algorithms have been developed
over the past few years for various geometric prob-
lems using the notion of coresets [1, 6, 9, 14]. For
all these problems, coresets defined satisfy the follow-
ing two properties:

a) If @ is an e-coreset of P and Q' is an e-coreset of
P’, then Q U Q' is an e-coreset of P U P’;

b) If @Q is an e-coreset of S and S is an d-coreset of P,
then @ is an (e + J)-coreset of P.

Using the above two properties and based on the general
dynamization technique of Bentley and Saxe [5], Agar-
wal et al. [2] obtained the following result in the data

*School of Computer Science, University of Waterloo, Water-
loo, Ont. N2L 3G1, Canada; hzarrabi@uwaterloo.ca

stream model: If there is an e-coreset of size f(e) for
a problem, then one can solve the problem in the data
stream model using O(f(g/log®n)logn) overall space,
where n is the number of elements received so far in the
stream.

In this paper, we show that for a special class of al-
gorithms which we call core-preserving, the space com-
plexity of the corresponding streaming algorithms can
be reduced to f(e), using a simple bucketing scheme.
The importance of this result is that the dependency of
the space complexity to the input size, n, is removed.
(Such a result was previously known only for the e-
coresets with respect to the extent measure [6, 4].) This
independency to the input size is very important as the
input size in the data streams is usually huge.

Our framework leads to improved algorithms for a
number of problems in the data stream model, some of
which are listed below. In the following, the input is
assumed to be a stream of points in R?, where d is a
constant.

e (Additive) coreset for k-center: We show
that an additive e-coreset for the k-center prob-
lem can be maintained in O(k/e?) space and O(1)
amortized update time, improving the previous
algorithm attributed to Har-peled [12] which re-
quires O(poly(k, 1/¢,logn)) space and similar time.
This is indeed the first streaming algorithm main-
taining an e-coreset for this problem using a total
space independent of n.

e Multiplicative coreset for k-center: For the
k-center problem, we show that a multiplicative e-
coreset (as defined in Section 2) can be maintained
in O(k!/e*) space and O(k) amortized update
time. This is again the first streaming algorithm
for this problem whose space is independent of the
input size. This result immediately extends to a
variant of the k-clustering problem in which the
objective is to minimize the sum of the clusters
radii 7, 10].

e Coreset for fat measures: For “fat” measures
such as diameter and radius of the minimum en-
closing ball, one can easily maintain an e-coreset by
just keeping the extreme points along O(1/g(4=1)/2)
directions. The time and space complexity of
this naive algorithm is O(1/¢(@=1/2), In two-
dimensions, using the recent algorithm of Agarwal

20th Canadian Conference on Computational Geometry, 2008

and Yu [4], one can improve the update time from
O(/1/¢) to O(log(1/¢)). We show that the update
time in 2D can be further reduced to O(1) using our
framework. Moreover, the update time in three di-
mensions is reduced from O(1/¢) to O(log(1/€)) us-
ing our algorithm. A slight improvement in higher
dimensions is implied as well.

2 Preliminaries

Let P be a set of points in RY. A k-clustering of P
is a set B of k balls that completely cover P. We
denote by rad(b) the radius of a ball b, and define
rad(B) = maxpeprad(b). A J-expansion of B is ob-
tained by increasing the radius of each ball of B by an
additive factor of §.

Definition 1 A set @ C P is called an additive e-
coreset of P for the k-center problem, if for every k-
clustering B of @, P is covered by an (e - rad(B))-
expansion of B.

We denote by (1 + €)B a clustering obtained from B
by expanding each ball b € B by a factor of ¢ - rad(b).

Definition 2 A set Q C P is called a multiplicative
e-coreset of P for the k-center problem, if for every k-
clustering B of @, P is covered by (1 + ¢)B.

Given two points p,q € R?, we say that p is smaller
than g, if p lies before ¢ in the lexicographical order of
their coordinates. Throughout this paper, we denote by
|z], the largest (integer) power of 2 which is less than
or equal to x.

3 Core-Preserving Algorithms

In this section, we formally define the notion of core-
preserving algorithms, and show how it can be used to
efficiently maintain coresets in data streams.

Definition 3 Let A be an (offline) algorithm that for
every input set P, computes an e-coreset A(P) of P.
We call A core-preserving, if for every two sets R and
S, A(RUA(S)) is an e-coreset of RU S.

For R = (), the above property implies that A(A(S))
is an e-coreset of S. It means that repeated calls to
a core-preserving algorithm on a set S always returns
an e-coreset of S. This is why the algorithm is called
“core-preserving”.

Theorem 1 Let A be a core-preserving algorithm that
for any set S, computes an e-kernel of S of size
O(8a4(e)) in time O(alS| + Tal(e)). Then for ev-
ery stream P, we can maintain an e-coreset of P of
size O(8.4(¢)) using O(84(e)) total space and O(a +
Ta(e)/8a(e)) amortized time per update.

Proof. The function INSERT described below inserts a
date item p into the stream P and returns an e-kernel
of P. Initially, @ and R are empty sets.

INSERT(p):

1. R<— RU{p}

2: if |R| > 8.4(¢) then
3: Q— A(RUQ)
4 R~

5. return QU R

The algorithm divides the input stream P into buck-
ets of size [S4(¢)]. At any time, only the last bucket is
active which is maintained in the set R. Let S = P\R.
The algorithm maintains an e-coreset of S in). Upon
arrival of a new item p, it is first added to the active
bucket R, and if R is full, algorithm A is invoked to
compute an e-coreset of R U . The correctness of
the algorithm immediately follows from the facts that
A is core-preserving and @ is an e-coreset of S; thus,
A(RUQ) is an e-coreset of RUS = P.

The total space used by the algorithm is bounded by
|Q| + |R| = O(84(¢e)). Algorithm A is invoked once per
[S.4(e)] inserts. Since each call to A requires O(a|S| +
Ta(e)) time, the amortized update time per input is
O+ Ta(e)/8a(e))- O

Theorem 1 yields two major improvements over
the general Bentley-Saxe method used in [2]: First
of all, the total space required is reduced from
O(8.4(g/log®n)logn) to O(84(e)), which is indepen-
dent of n. Secondly, the running time in the worst case
is reduced from O([a8 4 (¢/log® n)+T 4 (g/ log® n)] log n)
to only O(a|P| + T4(¢)), again independent of n.

4 Additive Coreset for k-Center

In this section, we provide an efficient streaming
algorithm for maintaining an additive e-coreset for the
k-center problem in fixed dimensions.

Lemma 2 There is a core-preserving algorithm that for
any given point set P C R?, computes an additive e-

coreset for the k-center problem of size O(k/e?) in time
O(|P| + k/e).

Proof. Let r*(P) be the radius of the optimal k-
clustering of P, and 7(P) be a 2-approximation of r*(P),
ie, r*(P) < 7(P) < 2r*(P).

We first define some notations: Let G, be a uniform
grid of side length «, and X, (P) be the set of all p € P,
such that p is the smallest point in a non-empty grid
cell of Go. Let 6(P) = |eF(P)/(4d*/?)|,. Our core-
preserving algorithm is as follows: given a point set P,

CCCG 2008, Montréal, Québec, August 13-15, 2008

we first compute 6 = §(P), and return Xs(P) as the
output. It is easy to observe that any k-clustering of
X5(P), when expanded by a factor of er*(P), covers all
the grid cells containing at least one point from P, and
therefore, Xs(P) is an e-coreset of P [3, 13].

Let R and S be two arbitrary point sets in R, and
let @ be an e-coreset of S computed by our algorithm.
To show that our algorithm is core-preserving, we need
to prove that for any input of the form P = RU Q, the
algorithm returns an e-coreset of RU S.

Let 6 = 6(P), o0 = 6(5), and p = max{d(P),(S5)}.
Obviously, X,(R U S) is an e-coreset of R U S, be-
cause both P and S are subsets of R U S, and hence,
max{7(P),7(S)} < 2r*(RUS). We claim that X,(RU
S) C X5(RUQ). Since p/d (resp., p/o) is a non-negative
power of 2, every grid cell of Gs (resp., §,) is completely
contained in a grid cell of G, (see Figure 1). Let p be
the smallest point of RU S in a grid cell ¢ of §,. Two
cases arise:

e p € R: in this case, p is the smallest point of a
cell ¢ € G5 (otherwise, there is a point p’ smaller
than p in ¢, which is smaller than p in c as well, a
contradiction). Therefore, p € X5(RU Q).

e p € S: here, p is simultaneously the smallest point
of acell ¢ € G, and a cell ¢/ € G5 (otherwise, if
there is a smaller point p’ in either ¢’ or ¢”, it would
be picked instead of p as the smallest point of ¢, a
contradiction). Since p is the smallest point in ¢/,
we have p € @), and since p is the smallest point of
¢”, we conclude that p € X5(RU Q).

Therefore, any p € X,(R U S) is contained in Xs5(R U
Q) = Xs(P), which completes the proof.

For the space complexity, note that every ball of an
optimal k-clustering of P intersects O(1/e?) grid cells
of Gs. Therefore, the size of the resulting e-coreset
is O(k/e?). We can use a linear-time implementa-
tion of Gonzalez’s algorithm [11, 12] to compute a 2-
approximation of r*(P), and therefore, the total run-

ning time required is O(|P| + k/e%). O
BT
: o
i °) .0 °§ o ’
P
; =0

Figure 1: Additive coreset for k-center. The points of
R, Q, and S\ @ are shown in white, black, and gray,
respectively.

Plugging Lemma 2 into the general framework provided
in Theorem 1, we immediately get the following result.

Theorem 3 Given a stream of points P in R?, an ad-
ditive e-coreset for the k-center problem of size O(k/e?)
can be maintained using O(k/?) total space and O(1)
amortized time per update.

The above results also hold for any L, metric: it just
suffices to replace d'/? by d'/? in the definition of §(P).
The algorithm for multiplicative e-coresets is omitted in
this extended abstract.

5 Coresets for Fat Extent-Related Problems

Given a point set P C R%, let B(P) denote the minimum
axis-parallel hyperbox enclosing P. We denote by ¢(P)
the length of the longest side of B(P). A subset Q@ C P
is called an additive e-kernel of P, if for all u € S%1,

w(Q,u) > w(P,u) — el(P),

where w(P, u) = max, 4ep (P — ¢, u).

A function p(-) defined over subsets of R is called
a fat measure, if there exists a constant o > 0 such
that for any additive e-kernel @ of P, au(P) < u(Q) <
p(P). Examples of fat measures are diameter, radius of
the minimum enclosing ball, and width of the smallest
enclosing hypercube. Obviously, if @ is an additive e-
kernel of P and p is a fat measure, then @ is an (¢/a)-
coreset of P with respect to p.

Given a point set P C R?, an additive e-kernel of P
can be computed efficiently using an adaptation of the
simple grid-rounding method proposed in [6, 15] based
on Dudley’s construction [8]. The algorithm is described
in the following lemma.

Lemma 4 There is a core-preserving algorithm that for
every point set P C R%, computes an additive e-kernel
of P of size O(1/e4=1/2) in O(|P| + 1/e4=CB/2) time
for d = 2, or in O((|P| + 1/e472)log(1/¢)) time for
d>3.

Proof. We assume w.l.o.g. that conv(P) contains the
origin. Let B(P) be the smallest hypercube centered at
the origin containing P. If ¢/(P) denotes the side length
of B(P), then obviously £(P) < ¢/(P) < 24(P).

Let B = B(P). By a simple scaling, we may assume
that B = [~1,1]%. Let R be the set of points of a +/e-
grid over the boundary of the cube [—2,2]¢, and let p,
denote the nearest neighbor of a point r € R in the set P
(see Figure 2). Let Q = {p, | r € R}. Obviously, |Q| <
|R| = O(1/£4=1)/2). Moreover, Q is an additive e-kernel
of P with the argument provided below. The running
time follows immediately from the fast implementation
of Chan using the discrete nearest neighbor queries [6].

20th Canadian Conference on Computational Geometry, 2008

Figure 2: Construction of additive e-kernel.

Consider two arbitrary point sets R and S in R?,
and let @ be an additive e-kernel of S computed by
our algorithm. In order for our algorithm to be core-
preserving, we need to show that for any input of the
form P = RU @, the algorithm returns an additive e-
kernel of RU S.

We adapt the proof from [6]. Fix a unit vector u €
S%=1 and a point p € RUS. Obviously, there is a point
r € R such that Z(r — p,u) < arccos(l — £/8) (See [6],
Observation 2.3). If p, € S, then by our construction
there is a point ¢ € @ such that ||r—g| < (1+ce)|jr—p;||
(details omitted). If p. € R, we simply set ¢ = p,.
Therefore,

lr =gl < (1+ce)|r —pll
= (1—-¢/8)(r—qu) < (l+4+ce){r—p,u)
= (r—qu) —3Vde/8 < (r —p,u) + 3cVde
(since || — p|| < 3vd and ||r - q|| < 3Vd)
= (p,u) < (g, u) +3Vd(c+1/8).

It means that the projections of p and ¢ in direction
u differ by at most O(g). Since ¢(P) > 1/2, we conclude
that (p — ¢,u) = O(e)¢(P) in every direction u, which
completes the proof. O

Combining Lemma 4 with Theorem 1, we get the fol-
lowing result:

Theorem 5 Given a stream of points P in R? and
a fat measure pu, an e-coreset of P with respect
to p can be maintained using O(1/£@=V/2) total
space and max {O(1),0((1/(4=3/2)1og(1/€))} amor-
tized time per update.

Remark. Using our framework to maintain e-coresets
of fat sets as a subroutine, we have recently succeeded to
obtain a streaming algorithm for maintaining e-coresets
with respect to the general extent measure using near
optimal space [16]. This leads to improved streaming
algorithms for a wide variety of geometric optimization
problems, including width, minimum enclosing cylinder,
minimum-width enclosing annulus, minimum-width en-
closing cylindrical shell, etc.

Acknowledgements The author would like to thank
Timothy M. Chan for his helpful comments.

References

[1] P. K. Agarwal and S. Har-Peled. Maintaining approxi-
mate extent measures of moving points. In Proc. 12th
ACM-SIAM Sympos. Discrete Algorithms, pages 148—
157, 2001.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. J. ACM,
51(4):606-635, 2004.

[3] P. K. Agarwal and C. M. Procopiuc. Exact and ap-
proximation algorithms for clustering. Algorithmica,
33(2):201-226, 2002.

[4] P. K. Agarwal and H. Yu. A space-optimal data-stream
algorithm for coresets in the plane. In Proc. 23rd Annu.
ACM Sympos. Comput. Geom., pages 1-10, 2007.

[5] J. L. Bentley and J. B. Saxe. Decomposable search-
ing problems I: Static-to-dynamic transformations. J.
Algorithms, 1:301-358, 1980.

[6] T. M. Chan. Faster core-set constructions and data
stream algorithms in fixed dimensions. Comput. Geom.
Theory Appl., 35(1-2):20-35, 2006.

[7] M. Charikar and R. Panigrahy. Clustering to minimize
the sum of cluster diameters. J. Comput. Systems Sci.,
68:417-441, Mar. 2004.

[8] R. M. Dudley. Metric entropy of some classes of sets
with differentiable boundaries. J. Approx. Theory,
10:227-236, 1974.

[9] G. Frahling and C. Sohler. Coresets in dynamic geomet-
ric data streams. In Proc. 87th Annu. ACM Sympos.
Theory Comput., pages 209-217, 2005.

[10] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and
K. Varadarajan. On clustering to minimize the sum
of radii. In Proc. 19th ACM-SIAM Sympos. Discrete
Algorithms, pages 819-825, 2008.

[11] T. Gonzalez. Clustering to minimize the maximum in-
tercluster distance. Theoret. Comput. Sci., 38:293-306,
1985.

[12] S. Har-Peled. Clustering motion. Discrete Comput.
Geom., 31(4):545-565, 2004.

[13] S. Har-Peled. No Coreset, No Cry. In Proc. 24th Conf.
Found. Soft. Tech. and Theoret. Comput. Sci., pages
324-335, 2004.

[14] S. Har-Peled and S. Mazumdar. On coresets for k-
means and k-median clustering. In Proc. 36th Annu.
ACM Sympos. Theory Comput., pages 291-300, 2004.

[15] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadara-
jan. Practical methods for shape fitting and kinetic data
structures using core sets. In Proc. 20th Annu. ACM
Sympos. Comput. Geom., pages 263-272, 2004.

[16] H. Zarrabi-Zadeh. An almost space-optimal streaming
algorithm for coresets in fixed dimensions. In Proc. 16th
Annu. Furopean Sympos. Algorithms, 2008, to appear.

