
CCCG 2008, Montréal, Québec, August 13–15, 2008

Achieving Spatial Adaptivity while Finding Approximate Nearest Neighbors

Jonathan Derryberry Don Sheehy Daniel D. Sleator Maverick Woo∗

Abstract

We present the first spatially adaptive data struc-
ture that answers approximate nearest neighbor (ANN)
queries to points that reside in a geometric space of any
constant dimension. The running time for a query q is
O(lg δ(p, q)), where p is the result of the preceding query
and δ(p, q) is the number of input points in a reasonably
sized box containing p and q. Moreover, the data struc-
ture has O(n) size and requires O(n lg n) preprocessing
time, where n is the number of points in the data struc-
ture. The constant factors in the above bounds depend
on the dimension d. For points in d dimensions, the Lt-
norm approximation ratio is O(d1+ 1

t). Our results use
the RAM model with words of size Θ(lg n).

1 Introduction

The problem of finding the nearest neighbor to a query
point is a fundamental data structure problem with
numerous applications in areas such as computational
geometry and machine learning. Unfortunately, find-
ing the exact nearest neighbor seems hard when the
dimension is 3 or higher as there is no known data
structure that achieves nearly linear preprocessing time
and nearly logarithmic query time. Hence, researchers
turned to the approximate version of the problem,
achieving significant performance gains by permitting
the data structure to return merely a near neighbor, a
point whose distance to the query is at most a constant
times the distance from the nearest neighbor.

A number of papers have sought to improve the per-
formance of ANN data structures (see references in [2]),
but none has shown how nonrandom patterns in query
sequences might be exploited to improve running time.
Examples of exploiting such nonrandomness abound in
the 1D version of the exact nearest neighbor problem,
for which data structures whose query performance de-
pends upon the locality of queries either in space or time
or both have long been known (see references in [4]).
Additionally, a few results have been achieved in 2D.
For example, [12, 3] have shown how to exploit tempo-
ral locality in a random query sequence if the distribu-
tion is known, while [10, 13] have shown how to achieve
dynamic-finger-like bounds in the 2D point search and
point location problems.

∗Department of Computer Science, Carnegie Mellon Univer-
sity, jonderry,dsheehy,sleator,maverick@cs.cmu.edu

Our ANN data structure is the first to achieve, in
any constant dimension, a provable speedup according
to the degree of spatial locality in the query sequence.
More specifically, in the RAM model with word size
Θ(lg n), we show how to preprocesses a set of n points in
d-dimensional space in O(n lg n) time to build an O(n)-
sized data structure that serves a sequence of queries
for which each query q costs O(lg δ(p, q)), where p is the
result of the preceding query and δ(p, q) is the number
of input points in a reasonably sized box containing p
and q. The big-O notation suppresses constants that
depend on d and the approximation ratio is O(d1+ 1

t)
in the Lt-norm. No insertions or deletions are allowed,
though it is straightforward to make our data structure
dynamic as long as we do not require spatially adaptive
bounds for updates. Our method is an extension to the
ideas presented in [15, 7].

Section 2 briefly discusses related work, including re-
sults in one dimension, which we will rely on as a black
box. Section 4 discusses the notion of “distance” that
we will use in this paper in the context of other notions
of distance that have been used by spatially adaptive
data structures in the past. Section 5 describes the data
structure and search algorithm, proves their correctness
and running time, and describes a few enhancements
that can be made. Section 8 describes some future work.

2 Related Work

Finger Search in 1D. There exists a variety of 1D
nearest neighbor data structures that exploit spatial lo-
cality in a query sequence. For example, Brodal et al.
gave an optimal design for finger search trees in the
pointer machine model [6]. Additionally, Cole showed
that splay trees, a simple heuristic for self-adjusting
binary search trees, satisfy the Dynamic Finger The-
orem [9]. With the added power of the RAM model,
Andersson and Thorup [1] showed how to achieve an
optimal query time of O(

√
lg q/ lg lg q) where q is de-

fined to be the number of points between the previous
and current queries, and Kaporis et al. showed how to
achieve a query time of O(lg lg q) for a large class of
input distributions [14].

In this paper, we will be making use of a 1D finger
search data structure as a black box. However, due to
the way in which the black box finger search data struc-
ture will be used, we require that it is not self-adjusting,
which rules out splay trees, for example. This require-

20th Canadian Conference on Computational Geometry, 2008

ment will become clear in Section 5. Also, we cannot
use the result of Kaporis et al. since we do not want to
restrict the class of instances on which our data struc-
ture works. Either of the other two 1D finger search
data structures mentioned above will work for our pur-
poses. In fact, if we do not require updates, we can
simply use a sorted array as our black box and perform
finger search in the obvious manner.

Finger Search in 2D. Though most of the work on
spatially adaptive data structures is restricted to 1D,
there has been some work on developing such distance-
sensitive data structures in 2D. In particular, Demaine
et al. [10] showed how to preprocess a set of points P to
permit a sequence of membership queries to points in P
with a time bound of O(lg δPPS (p, q)) where δPPS (p, q)
represents the distance between the previous query p
and the current query q as measured by a count of
the number of points in a triangle-shaped region con-
taining both p and q. Iacono and Langerman [13]
subsequently presented a result that achieves a similar
distance-sensitive bound for point location in 2D.

Previous Work on ANN. The literature on the ANN
problem is rich and we refer the reader to [11, Chap-
ter 11] for numerous references. However, in Section 3
we will expand on the two works [15, 7] that are most
relevant to this paper.

3 Approximate Nearest Neighbors and Space Filling
Curves

Space filling curves (SFCs) provide a natural mapping
from a high-dimensional space to a 1D curve. The
ordering of points on SFCs has been used extensively
to give a meaningful ordering to points in geometric
spaces. In particular, the problem of finding ANNs and
related proximity problems can be solved by SFC meth-
ods [15, 7]. In this section, we describe a well-known
algorithm for computing ANNs using SFCs from Liao
et al. [15]. This algorithm is based on another similar
algorithm that uses quadtrees. The quadtree version is
due to Chan [8] and is a derandomized version of an
algorithm of Bern [5]. We also describe the connection
between quadtrees and SFCs.

Let us consider a particular SFC known as the Z-order
curve. Points represented as d-tuples of w-bit words are
easily mapped onto the Z-order curve by a simple bit
shuffling operation. Let pi:j represent the jth bit of
the ith coordinate of point p ∈ Zd, assuming that each
coordinate has bounded precision. The shuffle operation
σ : Zd → Z is defined as the binary number σ(p) =
p1:w · · · pd:w · · · p1:1 · · · pd:1. For any pair of points p, q,
we can order p and q on the curve by comparing σ(p)
and σ(q). For a set of points P = {p1, . . . , pn}, their

Z-order is exactly their order in an in-order traversal of
a quadtree constructed from the points in P . Figure 1
depicts this relationship and gives some intuition for the
name “Z-order”.

Figure 1: The in-order traversal of the quadtree leaves
corresponds to the ordering of the points on the Z-order
curve.

The algorithm for ANN is as follows. Observe that
the Z-order depends on the placement of the origin.
Note that for a particular Z-order, the nearest neigh-
bor to a query is not necessarily the predecessor or the
successor. However, we can show that there is a shift of
the origin such that either the predecessor or the suc-
cessor in the resulting Z-order is an ANN. In partic-
ular, consider a set of s shifts vj = (j/s, · · · , j/s) for
j = 0, 1, · · · , (s − 1) and let s be (d + 1). Construct
a set of search structures, one for each of the (d + 1)
shifts. We compare p to q under the shift vj by compar-
ing σ(p + vj) to σ(q + vj) and insert each input point
into each of the structures. For a query q, do all (d+ 1)
searches for q and return the closest of the results. This
algorithm gives an O(d

3
2) approximation in L2 [8].

4 Combinatorial Distance Measures for Geometric
Points

The goal of a geometric data structure supporting the
dynamic finger property is to be distribution-sensitive
so that sequences of geometrically close queries can be
answered quickly. The desired guarantee is that a query
for a point q following a query of a point p takes time
O(lg dist(p, q)) for some distance measure dist. For 1D
problems, the distance between two points is the differ-
ence in their ranks. This combinatorial distance mea-
sure has no ready analogue in geometric spaces of di-
mension 2 and greater.

The purpose of the finger p is to limit the search space
to points that are geometrically close to p and q. Thus, a
natural way to define a distance measure between p and
q is to simply count the number of points in a reasonable
restriction of the search space. This intuition guided
previous work in geometric finger search to use the no-
tion of a region counting distance, in which dist(p, q) is
defined as the number of input points in some carefully
defined region containing p and q [10, 13].

CCCG 2008, Montréal, Québec, August 13–15, 2008

Formally, a region counting distance is defined by a
triple (x, y,R) where x and y are points and R is a re-
gion whose membership can be computed in O(1) time.
Given this triple, dist(p, q) is the number of points in the
image of R under the affine transformation that takes x
to p and y to q. Previous work only applied only to 2D
where this transformation is unique.

We propose a new combinatorial distance measure
similar to a region counting distance. Let U be some
axis-aligned box containing p and q with side length
c|p−q|∞. The distance is defined as δ(p, q) = maxU |S∩
U |. Clearly, the points counted all have the desired
property that their distances from p and q are bounded
by the distance between p and q multiplied by a constant
that depends on d. Thus, we have a distance measure
that captures a notion of geometric locality.

5 The Data Structure and Search Algorithm

Our data structure consists of (2d+ 1) 1D search struc-
tures, where d is the dimension. Each one corresponds
to the Z-ordering defined by one of the (2d+ 1) shifts.

Given a query q, a search for an ANN is straightfor-
ward. Let p be the result of the previous query. Similar
to Chan’s algorithm, we perform (2d+1) finger searches
from p in parallel, one for each shift, where d is the di-
mension. Let x1, . . . , xd+1 be the results found by the
first (d+ 1) searches that complete. Abandon the other
d searches and return the xi closest to the query q.

After returning an approximate nearest neighbor xi,
we need to update the 1D search structures to prepare
for the next query. This involves setting the finger
pointer in each structure to point at xi. To do this
quickly, we augment the data structure with a circu-
larly linked list containing all the nodes representing xi

in each of the 1D search structures.

6 Algorithmic Guarantees

6.1 Centering points in quadtree boxes

Chan proved that (d + 1) shifts of the quadtree suffice
to guarantee that for any point p and scale r, there is a
shift that puts p roughly in the center of the quadtree
square of scale r. This is the key lemma to prove that
some quadtree will return an O(d

3
2)-approximate near-

est neighbor.
For finger search to work, we need it to be true that

for two different points, p, p′ and two different scales
r, r′, there is a shift that puts p near the center of a
square at scale r and p′ near the center of a square at
scale r′. Two guarantees rather than one are needed
so that both the finger search will run quickly and the
result will be a good approximation. The usual (d+ 1)
shifts would suffice if we were willing to accept only one
of these guarantees. We will show that (2d + 1) shifts
suffice to get both.

To maintain consistency with the work we are ex-
tending, we assume the input points are scaled to finite
precision real numbers in [0, 1)d.

Say that p is α-central at scale r if for all i = 1, · · · , d,
we have pi + α mod r ≥ 2rα.

The following is a slight generalization of the Lemma
by Chan in [8]. The proof follows the same pattern as
the original.

Lemma 1 Let s > d be an odd integer representing the
number of shifts v(j) = (j

s , . . . ,
j
s), j = 0 . . . s− 1. For a

point p ∈ [0, 1)d, and scale r = 2−`, there are at most d
shifts v(j) such that p+ v(j) is not 1

2s -central at scale r.

Proof. We will prove that at most one shift is bad for
each dimension. Formally, we prove that for each i ∈
{1, . . . , d}, there is at most one shift v(j) such that

pi +
j

s
+

1
2s

mod r <
r

s
, (1)

or equivalently, by multiplying through by s/r,

2`spi + j2` + 1/2 mod s < 1. (2)

Suppose on the contrary that we have distinct j, j′ ∈
{0, . . . , s − 1} for which Equation 2 holds. Letting z =
2`spi + 1/2, we have z + j2` mod s < 1 , and z + j′2`

mod s < 1.
So, for integers q, q′ and remainders 0 ≤ x, x′ < 1, the

above inequalities imply z+j2` = qs+x, and z+j′2` =
q′s+x′. It follows that 2`(j−j′)−(q−q′)s = x−x′. Since
the LHS here is an integer and 0 ≤ x, x′ < 1, it must
be that in fact x = x′ and thus j2` ≡ j′2` (mod s). We
can divide both sides of this congruence by 2` because
2` and s are relatively prime (s is odd). The result is
j = j′, a contradiction. �

6.2 Query Time

To analyze query times we must first choose the con-
stant for our distance measure. Say δ(p, q) = |{x ∈ P :
|x− p|∞ ≤ (8d+ 4)|p− q|∞}|.

Using Lemma 1 for a scale r, we know that of (2d+1)
shifts, we will have at least (d+ 1) for which p is 1

4d+2 -
central. In particular, we are interested in the smallest
scale r ≥ (4d+ 2)|p− q|∞. At this scale, p has distance
at least |p − q|∞ from the boundary of any box Bi for
which it is 1

4d+2 -central. So q is also in each of these
(d+ 1) boxes Bi. The SFC touches each point in a box
B before leaving, so each finger search will take time
O(lg |P ∩ Bi|). Observing that all points in P ∩ Bi are
counted in δ(p, q), we see that (d+1) different shifts are
guaranteed to finish in O(lg δ(p, q)) time. Choosing the
best of these (d+1) answers takes constant time. Thus,
the total running time is O(lg δ(p, q)).

Second, we need to show that the returned point is
indeed a good ANN. This also follows from Lemma 1.

20th Canadian Conference on Computational Geometry, 2008

Let q∗ be the nearest neighbor of q. The lemma implies
that at the smallest scale r ≥ (4d + 2)|q − q∗|∞, there
can be at most d shifts for which q is not 1

4d+2 -central.
Therefore one of the (d+1) shifts that finished searching
found q in a box for which it was central at scale r.
The search returned a point x in that box, and thus
|q−x|∞ < (8d+4)|q−q∗|∞. So, x is a O(d)-approximate
nearest neighbor in the L∞ norm. It follows that x is a
O(d1+ 1

t)-approximate nearest neighbor in the Lt norm.

7 Enhancements to the algorithm

Using the quadtree to speed up search. We have ob-
served that the Z-order of the input is the same as the
in-order traversal of the leaves in a quadtree. For any
two points p, q in a quadtree, there is a unique path
along the link structure. Let us call the length of this
path the quadtree distance. The quadtree distance ap-
proximates the log of the Euclidean distance after nor-
malization by the empty space around p and q. One can
imagine building a quadtree that supports finger search
in time linear in the quadtree distance by walking up
and down within the quadtree.

Observe that even using compressed quadtree, in
which paths of degree two nodes of the tree are col-
lapsed, the quadtree distance may still be linear. Fur-
thermore, even with a good shift, this distance could be
O(δ(p, q)), which is exponentially worse than the SFC
method. However, it is not hard to construct examples
in which the quadtree distance is o(lg δ(p, q)). As an
example, consider a dense set of points lying between
p and q while p and q lie in a relatively sparse region.
This example shows that there is no strict ordering of
geometric and combinatorial distance measures.

Speeding up Finger Search by Exploiting RAM. An-
dersson and Thorup [1] have shown a RAM data struc-
ture that supports finger search in O(

√
lg q/ lg lg q)

time, where q is the rank difference. If we use their data
structure for each of the 1D structures, we get a match-
ing running time. Note, however, that this requires us
to explicitly compute the shuffle operation and store the
shuffled address for each point, whereas one may choose
to use the bit procedures by Chan [7] to perform com-
parisons without actually storing these addresses.

8 Conclusions and Future Work

In this paper, we showed how to achieve spatial adap-
tivity for the ANN problem in any constant dimension
by extending prior work based on SFCs.

There are a variety of avenues for future research re-
lated to the work in this paper. The most obvious po-
tential enhancement to this work would be to improve
the approximation ratio to (1 + ε).

Another enhancement to this work would be to shrink
the distance measure so that the distance between two
successive queries to p and q would be the number of
points inside a smaller box that more tightly bounds p
and q. This can be achieved to a degree by using a con-
stant number of shifts independently in each dimension
at the expense of an exponential factor in d to space
usage. Another direction for future work would be to
extend other ANN techniques, or even algorithms for
serving exact nearest neighbor queries in high dimen-
sions, to allow spatial adaptivity, temporal adaptivity,
or a combination of the two.

References

[1] A. Andersson and M. Thorup. Tight(er) worst-case
bounds on dynamic searching and priority queues. In
Proceedings of the 32th ACM Symposium on Theory of
Computing, pages 335–342, 2000.

[2] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high di-
mensions. Communications of the ACM, 51(1):117–122,
2008.

[3] S. Arya, T. Malamatos, and D. M. Mount. A sim-
ple entropy-based algorithm for planar point location.
ACM Transactions on Algorithms, 3(2):1–17, 2007.

[4] M. Badoiu, R. Cole, E. D. Demaine, and J. Iacono.
A unified access bound on comparison-based dynamic
dictionaries. Theoretical Computer Science, 382(2):86–
96, 2007.

[5] M. Bern. Approximate closest-point queries in high di-
mensions. Information Processing Letters, 45(2):95–99,
26 Feb. 1993.

[6] G. S. Brodal, G. Lagogiannis, C. Makris, A. K. Tsaka-
lidis, and K. Tsichlas. Optimal finger search trees in
the pointer machine. Journal of Computer and System
Sciences, 67(2):381–418, 2003.

[7] T. Chan. Closest-point problems simplified on the ram.
In Proceedings of the 13th Annual ACM-SIAM Sympo-
sium On Discrete Algorithms (SODA-02), 2002.

[8] T. M. Chan. Approximate nearest neighbor queries
revisited. Discrete & Computational Geometry,
20(3):359–373, 1998.

[9] R. Cole. On the dynamic finger conjecture for splay
trees, part II: The proof. SIAM Journal of Computing,
30(1):44–85, 2000.

[10] E. D. Demaine, J. Iacono, and S. Langerman. Prox-
imate point searching. Computational Geometry,
28(1):29–40, 2008.

[11] S. Har-Peled. Geometric Approximation Algorithms.
(working draft), 2008.

[12] J. Iacono. Optimal planar point location. In Proceed-
ings of the 12th ACM-SIAM Symposium on Discrete
Algorithms, pages 340–341, 2001.

[13] J. Iacono and S. Langerman. Proximate planar point
location. In Proceedings of the 19th ACM Symposium
on Computational Geometry, pages 220–226, 2003.

[14] A. C. Kaporis, C. Makris, S. Sioutas, A. K. Tsakalidis,
K. Tsichlas, and C. D. Zaroliagis. Improved bounds
for finger search on a ram. In 11th Annual European
Symposium on Algorithms, pages 325–336, 2003.

[15] S. Liao, M. A. Lopez, and S. T. Leutenegger. High
dimensional similarity search with space filling curves.
In 17th International Conference on Data Engineering,
pages 615–622, 2001.

