
CCCG 2008, Montréal, Québec, August 13–15, 2008

Smallest enclosing circle centered on a query line segment

Prosenjit Bose ∗, Stefan Langerman†, and Sasanka Roy ‡

Abstract

Given a set of n points P = {p1, p2, . . . , pn} in the plane,
we show how to preprocess P such that for any query
line segment L we can report in O(log n) time the small-
est enclosing circle whose center is constrained to lie on
L . The preprocessing time and space complexity are
O(n log n) and O(n) respectively. We then show how to
use this data structure in order to compute the smallest
enclosing circle of P whose center is restricted to lie in
one of several polygons having a total of m edges, in
O((m + n) log n) time, a significant improvement over
previous known algorithms.

1 Introduction

The problem of computing the smallest enclosing cir-
cle of a set P of n points in the plane was originally
posed in 1857 by Sylvester [11]. Many solutions have
appeared in the literature (see [9] or [8] for a brief his-
tory of the problem) culminating in the optimal linear
time algorithm by Megiddo [7].

In recent years, several constrained variants of this
problem have been studied, where restrictions are
placed on the location of the center of the smallest en-
closing disk. Already in his original paper and as a step
towards the general solution, Megiddo [7] studied the
situation where the center of the smallest enclosing cir-
cle is restricted to lie on a given straight line. Hurtado
et al. [4] generalized Megiddo’s technique to provide an
O(n + m) time algorithm for finding smallest enclosing
circle whose center is constrained to lie in the intersec-
tion of m linear inequalities.

Bose et al. [1] considered a generalized setting of the
problem where the center of the smallest enclosing circle
of P is constrained to lie inside a simple polygon of size
m. Their algorithm runs in O((n + m) log(n + m) + k)
time, where k is the number of intersections of the
boundary of the polygon with the farthest point Voronoi
diagram of P . In the worst case, k may be O(n2).
This result was later improved to O((n + m) log m) by
Bose and Wang [2]. In a further generalization of this
problem, where r (≥ 1) simple polygons with a total of

∗Carleton University, Ottawa, Canada, jit@scs.carleton.ca
†Chercheur qualifié du FRS-F.N.R.S., Université Libre de

Bruxelles, Brussels, Belgium, stefan.langerman@ulb.ac.be
‡Tata Consultancy Services Ltd., Pune, India,

sasanka.roy@tcs.com

m vertices are given, locating the center of the small-
est enclosing circle of P with its center inside one of
the given polygons was studied by Bose and Wang [2].
The time complexity of this version of the problem is
O((m + n) log n + (n

√
r + m) log m + m

√
r + r

3
2 log r)

and which has further improved to O(n log n+m log2 n)
by Roy et al. [10].

The query version of the smallest enclosing circle
(QSEC) where the center is constrained to lie on a
query line was originally posed by Roy et al. [10].
The preprocessing time and space complexity of their
algorithm is O(n log n) and O(n) respectively. The cen-
ter of the minimum enclosing circle can be reported in
O(log2 n) time. Very recently, Karmakar et al. [5] pro-
posed an optimal O(log n) query time algorithm for the
query version of the problem. However, the improved
query time comes at an increased cost in both prepro-
cessing time and space. The preprocessing time and
space complexity for their algorithm is O(n2).

In this paper we show how to achieve an optimal
query time of O(log n) for the query version of the prob-
lem with O(n log n) preprocessing time and O(n) space.
Using our result, we show how to find the smallest en-
closing circle where the center is restricted to lie in a set
of polygons with a total of m vertices, in O((m+n) log n)
time. This is a significant improvement over the previ-
ous best algorithm.

2 Preliminaries

Given a set P of n points in the plane, the only points
that can be on the boundary of any enclosing circle lie on
the convex hull of P (because a disk is convex and by the
definition of the convex hull). Thus, we will assume that
the points P = {p1, p2, . . . , pn} are in convex position.

Let V (P) denote the furthest point Voronoi diagram
of P (see [8] for a survey on Voronoi diagrams and their
furthest point counter-part). The diagram V (P) par-
titions the plane into n unbounded convex regions, de-
noted R(p1), R(p2), . . . , R(pn), such that for any point
p ∈ R(pj), d(p, pj) ≥ d(p, pk) for all k = 1, 2, . . . , n, and
k 6= j. Here, d(., .) denotes the Euclidean distance be-
tween a pair of points. This structure can be computed
in O(nlogn) time and O(n) space (see [9]). Furthest
point Voronoi diagrams play an important role when
studying enclosing disks, because of the following.

20th Canadian Conference on Computational Geometry, 2008

Lemma 1 [6] The smallest (unconstrained) enclosing
circle of a set P of points in the plane always has at
least two points of P on its boundary.

Lemma 1 implies that the center c of the smallest
enclosing circle of P always lies on an edge e of V (P).
It is this property that allows for the discretization of
the problem.

In this paper, for simplicity of exposition, we first as-
sume that the points are in general position (i.e. no four
points in P are co-circular). We then show how a minor
modification to our solution allows the removal of this
general position assumption. We begin by describing
how our data structure answers queries when the query
object is a line. Then, we show how the algorithm works
for query line segments.

a1

a2 a3 = c′

a4

pipj

L

Figure 1: ρ(ai) values are unimodal

It has been shown in [10] how to solve the query prob-
lem in O(log n) time with O(n log n) preprocessing time
and O(n) space when the solution has exactly one point
of P on its boundary. If the smallest enclosing circle
with center c′ constrained to lie on a line segment L has
exactly one point of P on its boundary, then c′ is either
the orthogonal projection of the furthest point to L onto
L, or c′ must lie on an endpoint of L. Thus, the solu-
tion can be found in O(log n) time by building a point
location structure on top of the furthest point Voronoi
diagram. The main difficulty is to solve the query prob-
lem when the smallest enclosing circle has more than
one point of P on its boundary. We present a solution
to this problem in the next section.

Lemma 2 [10] If the smallest enclosing circle with cen-
ter c′ constrained to lie on a segment L has more than
one point of P on its boundary, then c′ lies on an inter-
section point of L with an edge of V (P).

Note that in a degenerate case, c′ may be a vertex of
V (P) and in this case we can say that c′ coincides with
the end points of the edge of V (P).

Let ρ(q) denote the radius of the smallest enclosing
circle of P with center at point q. Note that if q ∈ R(pi)
then pi is on the boundary of the smallest enclosing
circle centered at q. Our algorithms will heavily rely on
the following:

Lemma 3 The function ρ(q) is convex.

Proof. The value of ρ(q) is the maximum distance of q
to the points of P , thus ρ(q) is the upper envelope of a
set of cones. So it is convex. �

In particular this implies that the restriction of ρ(q)
to some line L is a convex function as well.

3 The Data Structure

We now have all the tools to describe our method. Re-
call our initial assumption that no four points in P are
co-circular. Given this assumption, we note that V (P)
is a binary tree, denoted T . Let |T | denote the number
of vertices of T . Each edge e of T separates two un-
bounded Voronoi cells. Note that from any point inside
an unbounded cell, any ray in an unbounded direction
will be entirely contained in the cell. We augment the
tree T by associating with each edge such a ray from
the midpoint of e for each of the two adjacent cells.

The removal of a Voronoi edge e = (a, b) would split T
into two subtrees which we denote by Ta and Tb where
Ta is the subtree that contains a and Tb the subtree
containing b. The edge e is called a centroid edge if Ta

and Tb each contain no more than (2/3)|T | vertices. For
any binary tree, a centroid edge is known to exist and
can be found in linear time [3].

A centroid decomposition of T is a binary tree whose
nodes are associated with edges of T , whose root is a
centroid edge e = (a, b) and whose two subtrees are
recursively defined as centroid decompositions of Ta and
Tb. It is known that a centroid decomposition of any
binary tree T with n vertices has depth O(log n) and
can be constructed in O(n) time [3].

The data structure will be composed of a centroid de-
composition of T (see Figure 2) augmented with the rays
as described above, and a point location data structure
for V (P).

Lemma 4 The above preprocessing algorithm requires
O(n) time and space for a given V (P).

Lemma 5 Using the above structure, given a query line
L and an edge e = (a, b) of T , we can determine in O(1)
time whether the smallest enclosing circle with center
constrained to lie on L has its center in e, Ta or Tb.

Proof. Assume the Voronoi edge e = (a, b) separates
the two Voronoi regions R(pi) and R(pj). Let `1 and
`2 be the two rays associated with e. Note that for any

CCCG 2008, Montréal, Québec, August 13–15, 2008

v2 v3

v4
v5 v6 v7

v8 v9 v10
v11 v12 v13 v14 v15

v1

e1 e2

e3

e4 e5
e6

e7
e8 e9 e10 e11

e12 e13 e14

(a)

v2

v3

v4

v5
v6

v7v8v9

v10

v11

v12

v13
v14

v15
v1

e1

e2

e3

e4 e5

e6

e7

e8

e9

e10 e11

e12
e13

e14

(b)

Figure 2: (a) Binary tree T and (b) Centroid decomposition
of T

point q on `1 or `2, we know the cell that contains q,
and so which is the furthest point to q. Therefore we
can compute the value and the gradient of ρ(q) in O(1)
time.

The two rays `1 and `2 divide the plane into two re-
gions and the two subtrees Ta and Tb are each wholly
contained in one of these regions. Let A be the re-
gion containing Ta and B the region containing Tb. The
query line L may have three different types of intersec-
tions with `1 and `2, which form the basis of our case
analysis:

a
a

a

b

`1
`2

`1
`2

`1
`2

b

b

L

L

L

(c)

(a) (b)

x
x

x

Figure 3: Illustration of pruning

Case 1. L intersects both rays `1 and `2 (See Figure 3(a))

Case 2. L intersects only one ray, say `1 (See Figure 3(b))

Case 3. L intersects neither of the two rays (See Figure
3(c))

For each of the three cases, we show how to eliminate
one of the subtrees Ta or Tb from the search.

Case 1: Let y and z be the intersection of L with `1 and
`2, respectively (See Figure 3). By determining the

value and the gradient of ρ at y and at z, we can
determine if the answer lies on the segment [yz] or
if it lies on L outside [yz], since by Lemma 5, we
know that the function is convex. If the solution
lies on [yz], then the solution lies in T \Tb, otherwise
it lies on T \ Ta.

Case 2. Without loss of generality let L intersect `1 at y
(See Figure 3(b)). Again, by finding the value and
the gradient of ρ at y, and by Lemma 5, we can
determine if the solution lies in A or B. If the
solution lies in A then we know it lies in T \ Tb.
Otherwise, it lies in T \ Ta.

Case 3. If L does not intersect `1 and `2 (See Figure 3(c)),
then L lies completely inside A or B. We can dis-
card the sub-tree of the region that does not inter-
sect the line L. In the Figure 3(c) the solution lies
in T \ Ta.

�

Lemma 6 Using the above preprocessed data structure
the QSEC problem can be solved in O(log n) time.

Proof. In the worst case we may have traverse the
worst case depth of centroid decomposition tree which
is O(log n). Each step in this traversal costs O(1) time.
Hence the query time complexity result follows. �

4 QSEC for Query Line Segment

Here, the query object L = [f, g] is a line segment. We
first solve QSEC for the query line L that contains the
line segment L. Let α be the center of the QSEC for line
L. If α lies inside [f, g], then report α. Otherwise, by
Lemma 5, the center c′ of the desired constrained small-
est enclosing circle is one of the endpoints f or g, which
is closest to α. Let f be the closest point of α. Then
α = c′ and the radius of the desired smallest enclosing
circle is d(p, c′), where p ∈ P is the point whose corre-
sponding Voronoi cell contains c′. The Voronoi cell that
contains α can be found in O(log n) time. Thus QSEC
for the query line segment can be solved in O(log n)
time.

5 Solution when P is in general position

When P is in general position then T may not be a
binary tree. So, Lemma 4 is not true anymore. Now
we will describe a method to split the nodes of T whose
degree are greater than 3 by adding some virtual edges
and construct a virtual binary tree V T . We will show
that the number of edges thus inserted is no more than
O(n). Then it is easy to observe that solving QSEC
problem in V T is same as solving this problem for T
and QSEC of V T is QSEC of T . Let us consider a

20th Canadian Conference on Computational Geometry, 2008

vertex v of T with degree greater than 3. For simplicity,
the degree of v is k > 3.

We will add k − 1 virtual edges as follows to make it
a binary tree of size O(k):

Let (e1, e2, . . . , ek) (see Figure 4(a)) be the Voronoi
edges adjacent to vertex v. We will insert k − 1 virtual
edges (ve1, ve2, . . . , vek−1) between the pair of edges
(e1, e2, . . . , ek) (see Figure 4(b)). The edge vej keep the
coordinates of the vertex v and the equation of Voronoi
edges ej and ej+1. Intuitively, the implication of vir-
tual edge vej is that we can always draw two rays such
that one half-plane, say HP1, contains the sub-tree that
has edges e1, e2, . . . , ej and has root at v. Other half-
plane HP2 contains the sub-tree that contains the edges
ej+1, ej+2, . . . , ek and has root at v.

v

e1

e2

ek−2

ek−1 ek

v

e1

e2 ek−1

ek

v

v

v

ve1

vek−1

(a) (b)

Figure 4: Splitting a vertex of degree greater than 3

6 Constrained Smallest Enclosing Circle Problem
with Center in a given Set of Polygons

Now for the problem where we have to find the center in-
side r simple polygons with a total of m edges. Compute
the farthest point Voronoi diagram V (P) and identify
the center c′ of the unconstrained smallest enclosing cir-
cle. If it is inside one of these polygons, we report the
answer. Otherwise, the center will be on the boundary
of one of these polygons. For each edge (line segment),
we compute the center of the constrained smallest en-
closing circle with center on that edge, and report the
radius of the smallest one. Thus, the overall time com-
plexity becomes O((n + m) log n), where |P | = n. Thus
it improves the previous running time proposed Roy et
al. [10]. There may exist more than one such circle at-
taining the smallest radius [1]. We can report all these
circles with the same time complexity.

References

[1] P. Bose and G. Toussaint, Computing the con-
strained euclidean, geodesic and link center of a
simple polygon with applications, Proc. of the Pa-
cific Graphics International, 1996, pp. 102–112.

[2] P. Bose and Q. Wang, Facility location constrained
to a polygonal domain, Proc. of the Latin Amer-

ican Theoretical Informatics Symposium, 2002,
pp. 153–164.

[3] G. N. Frederickson and D.B. Johnson, Generating
and searching sets induced by networks, Proc. of the
7th International Colloquium on Automata, Lan-
guages and Programming, 1980, pp. 221–233.

[4] F. Hurtado, V. Sacristan, and G. Toussaint, Fa-
cility location problems with constraints, Studies in
Locational Analysis 15 (2000), 17–35.

[5] A. Karmakar, S. Roy, and S. Das, Fast computation
of smallest enclosing circle with center on a query
line segment, Proc. of the Canadian conference on
Computational Geometry, 2007, pp. 273–276.

[6] D. T. Lee, Furthest neighbor voronoi diagrams and
applications, Report 80-11-FC-04, Dept. Elect. En-
grg. Comput. Sci., Northwestern Univ., Evanston,
IL, 1980.

[7] N. Megiddo, Linear-time algorithms for linear pro-
gramming in r3 and related problems, SIAM Jour-
nal on Computing 12 (1983), 759–776.

[8] A. Okabe, B. Boots, K. Sugihara, and S. Chiu,
Spatial tessellations: Concepts and applications of
voronoi diagrams, 2000.

[9] F. P. Preparata and M. I. Shamos, Computational
geometry: An introduction, 1990.

[10] S. Roy, A. Karmakar, S. Das, and S. C. Nandy,
Constrained minimum enclosing circle with center
on a query line segment, Proc. Mathematical Foun-
dation of Computer Science, 2006, pp. 765–776.

[11] J. J. Sylvester, A question in the geometry of sit-
uation, Quarterly Journal of Mathematics (1857),
1–79.

