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Abstract

Given a set of polyhedral cones C1, · · · , Ck ⊂ Rd, and a
convex set D, does the union of these cones cover the set
D? In this paper we consider the computational com-
plexity of this problem for various cases such as whether
the cones are defined by extreme rays or facets, and
whether D is entire Rd or an affine subspace Rt. As a
consequence, we show that the problem of checking if
the union of a given set of convex polytopes is convex is
coNP-complete, thus answering a question of Bemporad
et al. [3].

1 Introduction

Let S ⊆ Rd be a set of points in Rd. The conic hull of
S, denoted by cone(S), is the set of all non-negative
linear combinations of points in S, i.e., cone(S) =
{
∑

p∈S µpp : µp ≥ 0 for all p ∈ S}. It is well-known
that any polyhedral cone cone(S) can be written equiv-
alently as the intersection of finitely many half-spaces,
i.e., cone(S) = {x ∈ Rd : Ax ≤ 0}, where A ∈ Rm×d.
The two representations are called the V- and the H-
representations, respectively.

In this note we are interested in the complexity of
covering problems of the following form:

ConeCover(C,D): Given a collection of cones C =

C1, . . . , Ck, and a convex set D, does
⋃k

i=1 Ci + D?

A polytope P is the convex hull of a finite set S of
points in Rd, and it can also be written in one of two
equivalent forms: P = conv(S) = {

∑

p∈S µpp : µp ≥
0 for all p ∈ S,

∑

p∈S µp = 1} (V-representation), or

P = {x ∈ Rd|Ax ≤ 1}, where 1 is the vector in which
each component is 1 (H-representation)1. A polyhedron
Q is the Minkowski sum of a polytope P and a cone C:

Q = P +C
def
= {x+y|x ∈ P, and y ∈ C}. Similarly, one

can also consider the problem PolytopeCover(P,D):
Given a collection of polytopes P = P1, . . . , Pk, and a
convex polytope D, does

⋃k

i=1 Pi 6+ D?
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1possibly after moving first the polytope so that its relative

interior contains the origin

Our motivation for studying the above covering prob-
lems comes from two other related problems on poly-
topes. The first is the well-known vertex-enumeration

problem of finding the vertices of a polytope given its
facet defining inequalities, to be described in more de-
tails in the next section. The second problem is to check
whether the union of a given set of polytopes is convex.
Bemporad, Fukuda and Torrisi [3] gave polynomial-time
algorithms for checking if the union of k = 2 polyhedra
is convex, and if so finding this union, no matter whether
they are given in V orH representations. They also gave
necessary and sufficient conditions for the union of a fi-
nite number of convex polytopes in Rd to be convex, and
asked whether these conditions can be used to design a
polynomial time algorithm for checking if the union is
convex. Bárány and Fukuda give slightly stronger con-
ditions in [2]. It will follow from our results that, if both
d and k are part of the input, then these conditions can
not be checked in polynomial time unless P=NP.

Unless otherwise specified, all the cones considered
throughout the paper will be assumed to be pointed,
i.e., contain no lines, or equivalently, have a well defined
apex, namely the origin. As we shall see, the complexity
of the above problem depends on how the cones are
represented, and whether they are disjoint or not. We
consider 3 different factors, namely:

(f1) whether the cones in C are given in V- or H-
representations, or both representations (VH),

(f2) what the set D is: we consider D = Rd and D = Rt

for some arbitrary k ≤ d.

(f3) whether the cones in C are

– (f3)-(I): pairwise disjoint in the interior and
intersect only at faces;

– (f3)-(II): pairwise disjoint in the interior , but
can intersect anywhere on the boundaries; and

– (f3)-(III): not necessarily pairwise disjoint.

We denote by ConeCover[F1, F2, F3] the different
variants of the problem, where F1 ∈ {V,H}, F2 ∈
{Rt, Rd} and F3 ∈ {I, II, III} describes cases (f1)-(I),
(f2)-(II), and (f3)-(III). Our results are summarized in
Table 1.
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Rd Rt

I II III I II III
V VE-hard VE-hard NPC NPC NPC NPC

H P ? NPC P ? NPC

VH P P NPC P ? NPC

Table 1: Complexity of Cone Covering problem for var-
ious input representations.

2 Results

Converting the H-representation of a polytope to its
V-representation and vice versa, is a well studied prob-
lem. Despite years of research, it is neither known if an
output-sensitive algorithm exists for this problem, nor
is it known to be NP-hard. The following decision ver-
sion of this problem is known to be equivalent to the
enumeration problem [1].

VertEnum(P, V ): Given an H-polytope P ⊆ Rd and
a subset of its vertices V ⊆ V(P ), check whether
P = conv(V ).

Let P be the polytope defined as {x|Ax ≤ 1}, where
A ∈ Rm×d. Every rational polytope can be brought into
this form by moving the origin in its relative interior and
scaling the normals of the facet-defining hyperplanes ap-
propriately. For any vertex v of P , consider the cone of
all vectors c such that v is the solution of the following
linear program: max cT x s.t. Ax ≤ 1. For every vertex
v of P , this cone is uniquely defined. We call this cone
the maximizer cone of v. Such a maximizer cone can be
defined for every proper face of a polytope. The union
of all such cones is also known as the normal fan of a
polytope [8]. It is easy to see that if A′ is the maximal
subset of rows of A such that A′v = 1, then the maxi-
mizer cone of v is the conic hull of the rows of A′ treated
as vectors in Rd.

Theorem 1 Problem ConeCover[V, Rd, I] is

VertEnum-hard.

Proof. Given an H-polytope P and a subset of its ver-
tices V , the V-representation of the maximizer cone for
each vertex in V can be computed easily from the facets
of P . Clearly, the union of these cones covers Rd if
and only if P = conv(V ). To see this, note that if
P 6= conv(V ) then P has a vertex v not in V and any
vector in the relative interior of the maximizer cone of
v does not lie in any of the cones corresponding to the
given vertices. �

Theorem 2 Problem ConeCover[V, Rt, I] is NP-

complete.

Proof. ConeCover[V, Rt, I] is clearly in NP. Now,
given an H-polytope P ⊂ Rd, an affine subspace Rt

and a V-polytope Q ⊂ Rk, it is NP-complete to decide
whether Q is the projection of P onto the given subspace
[7]. We give a polynomial reduction from this problem
to ConeCover[V, Rt, I].

Every vertex v of Q is an image of some (possibly
more than one) vertices of P . If this is not the case
then Q clearly can not be the projection of P . Since the
vertices of Q are known this condition can be checked
in polynomial time. To see why this is true, consider a
vertex v of Q and choose any direction α in the affine
space of Q such that αT x is maximized at v for all points
in Q. If we use the same vector α as objective function
over the points in P then the maximum is achieved at
the face containing all vertices whose image under pro-
jection is v.

Now, Pick any such vertex and call it v′. We associate
the maximizer cone of v′ with v and refer to it as C(v).
The V-representation of C(v) for every vertex v of Q can
be easily computed from the matrix A of the normals
of facet defining hyperplanes of P .

It is not difficult to see that if Q is not the projection
of P onto the given subspace Rt, then one can find a
direction c parallel to the given subspace such that a
vertex that maximizes cT x in P is such that its pro-
jection is a vertex of the projection of P but not of Q.
Hence, the union of cones C(v) for each vertex v of Q

covers Rt if and only if Q is the projection of P . Also,
all these cones intersect each other only at some proper
face. �

For a given set of H-cones, if the union does not cover
Rd then there is a facet with normal a ∈ Rd, of at least
one of these cones such that picking a point p in the
interior of this facet, p + ǫa lies outside every cone, for
some ǫ > 0. Let us call this facet a witness facet, and p

a witness point of the fact that Rd is not covered.

Theorem 3 There is a polynomial time algorithm for

solving ConeCover[H, Rd, I].

Proof. If the cones are allowed to intersect only at com-
mon faces, then every point in the interior of a witness
facet is a witness point. Thus, one can determine in
polynomial time whether the union of the given cones
cover Rd or not, by picking a point in the interior of ev-
ery facet, with normal a, of every cone and using linear
programming to check if p + ǫa lies outside every cone
for sufficiently small ǫ > 0. �

Theorem 4 There is a polynomial time algorithm for

ConeCover[VH, Rd, II].

Proof. It is easy to see that if the cones are allowed to
intersect only on the boundary, and if the union of the
given cones does not cover Rd, then the extreme rays of
any (possibly non-convex) “hole” are also the extreme
rays of some cone. For any such extreme ray w, if one
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considers a d-dimensional ball of radius ǫ centered at
some point on w, then for small enough ǫ some part of
this ball is not covered by any of the given cones.

Consider all the halfspaces {x| ax ≤ 0} corresponding
to the facets of the input cones that contain w, i.e.,

aw = 0. Let A be the matrix with each row the normal
vector of such a halfspace. The union of the given cones
does not cover Rd if and only if {x| Ax ≥ 0} defines a
full-dimensional region. This can be easily checked via
linear programming. �

Fact 1 For any t ∈ N, we can write Rt = ∪k+1
i=1 Ri,

where R1, . . . , Rk+1 are pointed cones, pairwise-disjoint

in the interior, whose H- and V-representations can be

found in in polynomial time.

Let C1 = {x ∈ Rm | A1x ≤ 0} = cone(S1) and
C2 = {x ∈ Rn | A2x ≤ 0} = cone(S2), where
A1 ∈ Rl×m, A2 ∈ Rr×n and S1 ⊆ Rm, S2 ⊆ Rn, be
two polyhedral cones. The direct-sum of C1 and C2, is
defined as:

C1 ⊕ C2 = {(x, y) ∈ R
m × R

n| A1x ≤ 0, A2y ≤ 0}

= cone

„„

v

0

«

: v ∈ S1

ff

[

„

0

v

«

: v ∈ S2

ff«

Theorem 5 Problem ConeCover[VH, Rd, III] is NP-

complete.

Proof. Clearly the problem is in NP since a direction
exists outside the union of the given cones if they do not
cover Rd. We can easily check if such a given direction
indeed lies outside each of the cones since the facets of
each cone are known. For proving its NP-hardness, we
use a reduction from the following problem:

Sat(V,F ,G): Given a finite set V and two hyper-
graphs F ,G ⊆ 2V , is there a set X ⊆ V such that:

X 6⊇ F for all F ∈ F and X 6⊆ G for all G ∈ G. (1)

When F = G, this problem is called the saturation prob-

lem in [4], where it is proved to be NP-complete. Given
F ,G ⊆ 2V , we construct two families of cones CF and
CG in RV , such that there is a point x ∈ RV \ (CF ∪ CG)
if and only if F and G are not saturated (i.e. there is a
set X ⊆ V satisfying (1)).

For X ⊆ V , denote respectively by RX
≥ and RX

≤ the

cones cone{ei : i ∈ X} = {x ∈ RX : x ≥ 0} and
cone{−ei : i ∈ X} = {x ∈ RX : x ≤ 0}, where ei

denotes the standard ith unit vector. Let X = V \X,

and
⋃|X|+1

i=1 Ri(X) = RX be the partition of RX given
by Fact 1. For each F ∈ F , we define |V |−|F |+1 cones
Ci

F = RF
≥⊕Ri(F ), for i ∈ [|F |+1], and for each G ∈ G,

we define |G|+1 cones Ci
G = RG

≤⊕Ri(G), for i ∈ [|G|+1].

Finally, we let CF = {Ci
F : F ∈ F , i ∈ [|F | + 1]},

CG = {Ci
G : G ∈ G, i ∈ [|G| + 1]}, and C = CF ∪ CG .

Then it is not difficult to see that all the cones in C are
pointed.

Suppose that X ⊆ V satisfies (1). Define x ∈ RV by

xi =

{

1, if i ∈ X,

−1, if i ∈ V \X.

Then x 6∈ ∪C∈CC. Indeed, if x ∈ Ci
F , for some F ∈ F

and i ∈ [|F | + 1], then xi ≥ 0 and hence xi = 1, for all
i ∈ F , implying that X ⊇ F . Similarly, if x ∈ Ci

G, for
some G ∈ G and i ∈ [|G| + 1], then xi ≤ 0 and hence
xi = −1, for all i ∈ G, implying that X ⊆ G.

Conversely, suppose that x ∈ RV \ C. Let X = {i ∈
V : xi ≥ 0}. Then we claim that X satisfies (1).
Indeed, if X ⊇ F for some F ∈ F , then xi ≥ 0 for all
i ∈ F , and hence there exists an i ∈ [|F |+ 1] such that
x ∈ Ci

F (since the cones R1(F ), . . . , R|F |+1(F ) cover

RF ). Similarly, if X ⊆ G for some G ∈ G, then xi < 0
for all i ∈ G, and hence there exists an i ∈ [|G|+1] such
that x ∈ Ci

G. In both cases we get a contradiction. �

Corollary 1 ConeCover[V, Rd, III],
ConeCover[H, Rd, III] and ConeCover[H, Rt, III]
are all NP-complete.

Proof. NP-completeness of ConeCover[V, Rd, III]
and ConeCover[H, Rd, III] follow immedi-
ately from Theorem 5. NP-completeness of
ConeCover[H, Rt, III] is an immediate consequence
of the NP-hardness of ConeCover[H, Rd, III] and the
fact that for an H-cone, the intersection of this cone
with any affine subspace can be computed easily. �

An interesting special case of problem Sat is when
the hypergraphs F and G are transversal to each other:

F 6⊆ G for all F ∈ F and G ∈ G, (2)

in which case, the problem is known as the hypergraph

transversal problem, denoted HyperTrans. Even
though the complexity of this problem is still open,
it is unlikely to be NP-hard since there exist algo-
rithms [5] that solve the problem in quasi-polynomial
time mo(log m), where m = |F| + |G| + |V |. Improving
this to a polynomial bound is a standing open ques-
tion. We observe from our reduction in Theorem 5 that
ConeCover includes HyperTrans as a special case.

Corollary 2 Consider a family of cones C that can be
partitioned into two families C1 and C2 such that

int(C1) ∩ int(C2) = ∅, for all C1 ∈ C1 and C2 ∈ C2. (3)

Then ConeCover(C, Rd) is HyperTrans-hard.
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Proof. We note in the construction used on the proof
of Theorem 5 that if the hypergraphs F and G satisfy
(2), then the families of cones CF and CG satisfy (3).
Indeed, if x ∈ Ci

F ∩ C
j
G, for some F ∈ F , i ∈ [|F | + 1],

G ∈ G, and j ∈ [|G|+ 1], then xk ≥ 0 for all k ∈ F and
xk ≤ 0 for all k ∈ G. Thus for any k ∈ F \ G (which
must exist by (2)), we have xk = 0, implying that x is
not an interior point in either Ci

F or C
j
G. �

Freund and Orlin [6] proved that, for an H-polytope
P and a V-polytope Q, checking if Q ⊇ P is NP-hard.
For all other representations of P and Q, checking P ⊆
Q can be done by solving a linear program. Here we
can show that the union version of this problem is hard,
no matter how the polytopes are represented.

Corollary 3 Given a set of H-polytopes

P = {P1, . . . , Pk} and an H-polytope Q, problem

PolytopeCover(P, Q) is NP-hard.

Proof. We give a reduction from problem
ConeCover[H, Rd, III] which is NP-hard by The-
orem 5. Let Sd be a ”shifted” simplex in Rd such
that 0 ∈ int(Sd). Given cones C1, . . . , Ck, we define
polytopes P1, . . . Pk, where Pi = Ci ∩ Sd. Given
the H-representations of Ci, we can compute the
H-representations of Pi in polynomial time using linear
programming (LP) for removing possible redundancies.

Now one can easily see that ∪k
i=1Ci = Rd iff ∪k

i=1Pi =
Sd. �

Corollary 4 Given a set of V-polytopes
P = {P1, . . . , Pk} and a V-polytope Q, problem

PolytopeCover(P, Q) is NP-hard.

Proof. We give a reduction from problem
ConeCover[V, Rd, III] which is NP-hard by The-
orem 5. Recall that in the proof of Theorem 5, for
each hyperedge F we construct a set of pointed cones
Ci

F = RF
≥ ⊕ Ri(F ), for i ∈ [|F | + 1]. Instead of

constructing multiple cones for each hyperedge let us

just consider one cone CF = RF
≥ ⊕ R|F | per hyperedge.

Similarly for the cones corresponding to the hypergraph

G. It is clear that CF = ∪
|F |+1
i=1 Ci

F . Note that each
such cone is not pointed but instead has a pointed part
RF

≥ corresponding to the vertices in the hyperedge F

and the affine space R|F | corresponding to the vertices
not in F . Also, RF

≥ is one orthant in R|F |.
For such cones checking whether the union covers

Rd or not is NP-hard as well (see proof of Theorem
5). Now consider the d-dimensional cross-polytope βd,
and let C1, . . . , Ck be the cones constructed above. The
cross polytope βd contains the origin in its interior, and
the vertices of Pi = βd ∩ Ci for each cone constructed
above can be easily computed. It is also easy to see that
∪k

i=1Ci = Rd iff ∪k
i=1Pi = βd. �

Theorem 6 Given a set of rational convex polytopes

P1, . . . , Pk ⊆ Qd, it is coNP-complete to check if their

union is convex, for both H and V-representations of the

input polytopes.

Proof. First we show that the problem is in coNP. Let
Q = ∪k

i=1Pi. Given two points x, y ∈ Q, we want to

verify that the line segment [x, y]
def
= {λx+(1−λ)y| λ ∈

[0, 1]} 6⊆ Q. This can be done by iterating the algorithm
for two polytopes in [3]: 1. let P be the polytope Pi such
that x ∈ Pi; 2. find the (last) point z ∈ P on the ray
{x + λ(y − x)| λ ≥ 0} such that λ is maximized; 3. if
there is another polytope Pj such that z ∈ Pj , then set
P ← Pj , x← z, and go to step 2 else output ”No” and
halt; 4. if x = y then output ”Yes” and halt. The reader
can verify that all the above steps can be implemented in
polynomial time, given an oracle for LP, and no matter
how the polytopes are represented.

Consider the H-representation first. Let P =
{P1, . . . , Pk} and Sd be the polytopes used in the con-
struction in Corollary 3. We now reduce problem
PolytopeCover(P, Sd) to checking if the union of a
given set of polytopes is convex. Using an algorithm for
the latter problem, we can check if P = ∪k

i=1Pi is con-
vex. If the answer is ”No”, we conclude that P 6= Sd.
Otherwise, since P ⊆ Sd, either P = Sd, or there is hy-
perplane separating a vertex of Sd from P . The latter
condition can be checked in polynomial time by solving
k linear programs for each vertex.

For the V-representation the same argument as above
works if we use βd instead of Sd. �
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