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Exact Pareto-Optimal Coordination of Two Translating Polygonal Robots on
a Cyclic Roadmap
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Abstract

We consider planning optimal collision-free motions of
two polygonal robots under translation. Each robot has
a reference point that must lie on a given graph, called
a roadmap, which is embedded in the plane. The initial
and the goal are given for each robot. Rather than im-
pose an a priori cost scalarization for choosing the best
combined motion, we consider finding motions whose
cost vectors are Pareto-optimal. Pareto-optimal coor-
dination strategies are the ones for which there exists
no strategy that would be better for both robots. Our
problem translates into shortest path problems in the
coordination space which is the Cartesian product of
the roadmap, as a cell complex, with itself. Our al-
gorithm computes an upper bound on the cost of each
motion in any Pareto-optimal coordination. Therefore,
only a finite number of homotopy classes of paths in
the coordination space need to be considered. Our al-
gorithm computes all Pareto-optimal coordinations in
time O(25αm1+5αn2 log(m2αn)), in which m is the num-
ber of edges in the roadmap, n is the number of coordi-
nation space obstacle vertices, and α = 1 + d(5` + r)/be
where ` is total length of the roadmap and r is total
length of coordination space obstacle boundary and b is
the length of the shortest edge in the roadmap.

1 Introduction

Previous approaches to multiple-robot motion planning
are often categorized as centralized or decoupled. A
centralized approach typically constructs a path in a
composite configuration space, which is formed by the
Cartesian product of the configuration spaces of the in-
dividual robots. A decoupled approach typically gener-
ates paths for each robot independently, and then con-
siders the interactions between the robots. In [10, 16],
an independent roadmap is computed for each robot,
and coordination occurs on the Cartesian product of the
roadmap path domains. The suitability of one approach
over the other is usually determined by the tradeoff be-
tween computational complexity associated with a given
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Figure 1: The four Pareto-optimal solutions for a coor-
dination problem in which the robots want to exchange
place.

problem, and the amount of completeness that is lost.
In some applications, such as the coordination of Au-
tomated Guided Vehicles (AGV), the roadmap might
represent all allowable mobility for each robot.

In this paper, we study the problem of planning opti-
mal motions of two polygonal robots traveling on a given
roadmap. The robots must be disjoint when they travel,
and as a result, there are tradeoffs between the robots’
completion times. One approach is to consider a scalar
cost that combines the completion times. Minimizing
the average time robots take to reach their goals [9, 12],
and minimizing the time that the last robot takes have
been studied before [15]. The problem with scalariza-
tion is that it eliminates many interesting coordination
strategies, possibly even neglecting optimality for some
robots [10]. Rather than impose an a priori scalariza-
tion for choosing the best combined motion, we consider
finding motions whose cost vectors (cost of robot 1, cost
of robot 2) are Pareto-optimal. Pareto-optimal coor-
dination strategies are the ones for which there exists
no strategy that would be better for both robots; see
[14]. Optimal coordinations according to a scalar cost
impose a predetermined preference between the robots,
whereas having all Pareto-optimal coordinations before-
hand gives the freedom to determine the preference at
run-time. It was shown that the number of Pareto-
optimal coordinations for n robots on any roadmap is
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finite [6]; therefore, it is plausible to seek all of them.
A sample problem and its Pareto-optimal solutions are
illustrated in Figure 1.

This work is inspired by previous approaches to multi-
ple robot coordination. O’Donnell and Lozano-Pérez in-
troduced coordination diagrams for planning motions of
two robot manipulators [13]. Alt and Godau used sim-
ilar coordination spaces in a different context to com-
pute the Fréchet distance between two polygonal curves
[1]. LaValle and Hutchinson gave the first approach
to Pareto-optimal coordination of multiple robots [10].
They presented an approximation algorithm based on
dynamic programming in the discretized coordination
space. Ghrist et al. gave a characterization of Pareto-
optimal coordinations of multiple robots using CAT(0)
geometry [7]. They provided an algorithm to shorten
a given coordination to a homotopic, possibly Pareto-
optimal one. In our previous work, we gave an ef-
ficient algorithm for finding Pareto-optimal coordina-
tion strategies for two polygonal robots on an acyclic
roadmap [4]. In this paper, we present an algorithm for
the general case. Due to space limitations, proofs of the
propositions, lemmas, and theorems are included in the
appendix.

2 Problem Formulation

We give a brief formulation of the problem. For a more
detailed exposition, see [4]. Let the robots, R1 and R2,
be polygonal open sets embedded in the plane. They
translate along a roadmap G, which is an embedded
graph in the plane1. Edges of G are piecewise-linear
segments. The roadmap need not be connected, so ef-
fectively each robot can have its own roadmap. Each
edge of G is weighted by its Euclidean length. In this
way, G turns into a metric graph [3]. The robots have
a maximum speed and are capable of instantly switch-
ing to any speed between zero and the maximum. By
scaling the respective metric graphs, we assume without
loss of generality that both robots have unit maximum
speed. Under this assumption, the distance function
d(x, y) gives the minimum amount of time that it takes
Ri to go from x to y on G.

We are given an initial and a goal configuration
qinit
i , qgoal

i ∈ G for each robot Ri. The obstacle region,
denoted by O ⊂ G × G, is the set of configurations at
which R1 and R2 collide. Since the robots are polygo-
nal and roadmap paths are piecewise-linear, the obsta-
cle region is a collection of polygonal, open connected
components. A coordination is a continuous path in the
coordination space G × G, from qinit = (qinit

1 , qinit
2 ) to

qgoal = (qgoal
1 , qgoal

2 ), that avoids O.
1If we assume that G is locally embedded in the plane, in which

case its edges may intersect, then our algorithm correctly works
and our results still hold. For the sake of clarity, we preferred to
assume G is embedded.

The vector-valued cost J = (J1, J2) separately mea-
sures the time that each robot takes to reach its
goal and stop. Define d∞ : ((x1, x2), (y1, y2)) 7→
max(d(x1, y1), d(x2, y2)), in which d is the metric in
G. Let L∞ be the functional that gives the length of
each continuous path in G × G according to d∞. For
each coordination γ = (γ1, γ2) : [0, 1] → G × G, let
ti = min{t ∈ [0, 1] : γi([t, 1]) = qgoal

i }. In that case,
Ji(γ) = L∞(γ|[0,ti]) and J (γ) = (J1(γ), J2(γ)). Let
C be the set of all coordinations. The cost J : C →
[0,∞)2 induces a partial order on the set of all coordi-
nations C. Each minimal element in this partial order
is called a Pareto-optimal coordination. The problem
is to find all Pareto-optimal coordinations for the two
robots.

3 Canonical Pareto-optimal Coordinations

Different paths that have the same end points can
have equal L∞ lengths in the coordination space.
Consequently, there are different coordinations with
equal cost. We fix a canonical form for equivalent
Pareto-optimal coordinations based on Euclidean short-
est paths.

Proposition 1 For every Pareto-optimal coordination,
there is an equivalent coordination that is composed of a
finite sequence of Euclidean shortest segments between
the vertices of the obstacle region, qinit, qgoal, and in
some cases (x, qgoal

2 ) or (qgoal
1 , x).

The points (qgoal
1 , x) and (x, qgoal

2 ) that need to be con-
sidered are characterized in [4]. A point (qgoal

1 , x) or
(x, qgoal

2 ) needs to be considered if there is a collision-
free Euclidean shortest segment, with equal progression
for R1 and R2, from an obstacle vertex or qinit to the
point (qgoal

1 , x) or (x, qgoal
2 ).

4 Algorithm Presentation

To find canonical Pareto-optimal coordinations, our al-
gorithm computes Euclidean shortest segments between
obstacle vertices, initial and goal configurations, and
some points (qgoal

1 , x) and (x, qgoal
2 ) in the coordina-

tion space. Fixing the end points in the coordination
space, there is only one shortest path in every homotopy
class, which holds because the space is non-positively
curved [6]. The roadmap can be cyclic, and conse-
quently the universal cover of the coordination space can
be unbounded. An incremental exploration of the un-
bounded universal cover may never stop, because there
are multiple Pareto-optimal coordinations whose max-
imum length is unknown beforehand. Our algorithm
constructs a bounded portion of the universal cover in
which the shortest path algorithm is applied. Using
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Figure 2: A coordination cell e0 × e1, and its skeleton
Σ.

shortest path algorithms in the plane such as continu-
ous Dijkstra [8, 11] or visibility graph methods in the
universal cover of the coordination space, one can com-
pute the shortest paths. Using a cost upper bound com-
puted in advance, our algorithm constructs the relevant
part of the universal cover. The rest of the algorithm
is essentially identical to the acyclic case applied to the
universal cover [4].

4.1 Coordination Cost Upper Bound

In a scalar minimization problem, the cost of any feasi-
ble solution is an upper bound for the cost of an optimal
solution. The key idea here is the same. The following
lemma derives an upper bound on the cost of every mo-
tion in any Pareto-optimal coordination.

Lemma 2 Let ∆1, ∆2 ⊆ G be such that {qgoal
1 }×∆2 =

{qgoal
1 } × G − O, and ∆1 × {qgoal

2 } = G × {qgoal
2 } − O.

Let δi be the diameter of ∆i as a metric graph. Let λ
be the Euclidean length of an arbitrary coordination γ.
Let τ be a Pareto-optimal coordination. In that case,
J1(τ), J2(τ) ≤ λ + δ, in which δ = max(δ1, δ2).

To compute λ, which is the Euclidean length of an
arbitrary coordination γ, we use the dimension reduc-
tion method of Aronov et al. [2]. Denote the boundary
of obstacle region by ∂O. Define Υ1 = {qinit

1 } × G −
O,Υ2 = G × {qinit

2 } − O, Υ3 = {qgoal
1 } × G − O, Υ4 =

G × {qgoal
2 } − O, and Σ = ∂O ∪ (

⋃4
j=1 Υj). We call Σ

the skeleton of G × G − O. See Figure 2 for a simple
example. Note that the skeleton is a one-dimensional
object. It is composed of five pieces: R1 at its initial,
R2 at its initial, R1 at its goal, R2 at its goal, and R1

touching R2. The following lemma follows from Lemma
1 in [2].

Lemma 3 (Aronov et al. [2]) There is a collision-
free path from qinit to qgoal in the coordination space
if and only if there is a path from qinit to qgoal in Σ,
the skeleton of G × G −O.

Our algorithm constructs Σ by gluing ∂O and Υj

along their intersection points. We discussed how to

compute the obstacle region in [4]. To compute Υj ,
first we compute M = R1 ª R2, the Minkowski dif-
ference. By intersecting polygon M positioned respec-
tively at qinit

1 and qgoal
1 with G, we compute Γ2 =

G − ({qinit
1 } ⊕ M) and ∆2 = G − ({qgoal

1 } ⊕ M). By
intersecting −M positioned respectively at qinit

2 and
qgoal
2 with G, we compute Γ1 = G − ({qinit

2 } ªM) and
∆1 = G − ({qgoal

2 } ªM). It is enough to observe that
Υ1 = {qinit

1 }×Γ2, Υ2 = Γ1×{qinit
2 }, Υ3 = {qgoal

1 }×∆2,
and Υ4 = ∆1 × {qgoal

2 }. Dijkstra’s algorithm yields γ
and the minimum distance of qgoal from qinit in Σ which
is taken as λ. Finally, the diameter, or an overestimate
of the diameter, of ∆i yields δi. Recall that the upper
bound is λ + max(δ1, δ2).

4.2 Universal Cover of G × G

Given the upper bound computed in Section 4.1, we
only need to consider a finite portion of the universal
cover. Here we describe an algorithm to construct it.
Let X be the universal cover of G as a cell complex. In
that case, X ×X is the universal cover of G × G, and it
is enough to build the relevant part of X to construct
the relevant part of X × X .

Since X is composed of disjoint copies of a fundamen-
tal domain glued along identified vertices, we describe
how to build a fundamental domain, denoted by X0. Let
T be any spanning tree of G (a collection of trees if G is
not connected). Let ei = (ui, vi), i = 1, . . . , k be those
edges of G that are not in T . Obtain X0, the funda-
mental domain of X , by adding k new vertices u∗i and
k edges (vi, u

∗
i ) to T . Note that the length of (vi, u

∗
i )

is the same as that of (ui, vi). Cycles of G are opened
into paths in X0. Vertices u∗i must be identified with ui

in neighboring copies of the fundamental domain. We
call ui and u∗i gluing spots of X0, because X is obtained
by iteratively gluing disjoint copies of the fundamental
domain to X0 such that ui ∈ X0 is identified with u∗i in
one copy and u∗i ∈ X0 is identified with ui in another
copy. If you want to see an illustration, see Figure 3 in
the appendix.

Our algorithm builds X0 first, and initializes Y = X0.
It inserts ui and u∗i onto a list. For every vertex in
the list, the algorithm generates a copy of X0 and glues
it to Y along the relevant vertex. It then inserts the
gluing spots of the newly generated copy in the list. It
iterates over these steps until Y covers the relevant part
of X . For that purpose, the distance between the vertex
and the initial copy of X0 is computed at each iteration.
If that distance is more than the upper bound, then
the vertex is neglected and no copies of X0 is glued.
Eventually, the algorithm stops when there are no more
vertices in the list.
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4.3 Applying the Acyclic Algorithm

We showed how to compute Y, the relevant portion
of the universal cover of G, in Section 4.2. Note that
Y ⊂ X is contractible. Therefore, it is acyclic and we
may now apply our acyclic Pareto-optimal coordination
algorithm to it [4]. The acyclic algorithm computes the
visibility graph in Y×Y among obstacle vertices and the
initial and goal configurations, augments it with some
extra edges, and finds the shortest paths. Obstacles are
computed once in G × G, and they are copied multiple
times to obtain obstacles in Y × Y. There are several
copies of qgoal in Y×Y all of which need to be considered
in the visibility graph. Any collision-free path from qinit

to any qgoal copy is a coordination. Consequently, there
are several copies of visibility graph points (x, qgoal

2 ) and
(qgoal

1 , x) that need to be considered.

4.4 Complexity Analysis

Let m denote the number of edges in G and let n denote
total number of obstacle vertices in G × G. Let ` be
the total length of G and r the total length of obstacle
boundary. Let b denote the length of the shortest edge
in G. Define α = 1 + d(5` + r)/be.

Theorem 4 The time complexity of our algorithm is
O(25αm1+5αn2 log(m2αn)).

5 Conclusion

We presented an algorithm to compute all Pareto-
optimal coordinations of two polygonal robots on a net-
work of piecewise-linear paths in the plane. The key
insight was an upper bound on the cost of each motion
in a Pareto-optimal coordination. Our algorithm ap-
plies the previous acyclic algorithm to a finite portion
of the universal cover of the coordination space [4]. This
method can be applied to find all Pareto-optimal coordi-
nations, provided the configuration space of each robot
is G, all paths in G × G are allowed, and the obstacle
regions in G × G are polygonal.
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Appendix

Proposition 1
Proof sketch: We first choose Euclidean shortest paths as
canonical form for L∞-shortest paths in G × G − O. Note
that a Euclidean shortest path is also L∞-shortest. An ar-
gument similar to the one in [5], which is essentially based
on shortening, shows Euclidean shortest paths in G ×G −O
comprise Euclidean shortest segments between the vertices
of the obstacle region O and the two end points.

We now choose a canonical form for a Pareto-optimal
coordination γ. If robot R1 reaches its goal first under γ,
then the final segment of γ is (qgoal

1 , x) to (qgoal
1 , qgoal

2 ) for
some x ∈ G. In that case, let γ̃ be that part of γ that goes
from qinit to (qgoal

1 , x). Likewise, the final segment of γ is
(x, qgoal

2 ) to (qgoal
1 , qgoal

2 ) if robot R2 reaches its goal first.
In that case, let γ̃ be that part of γ that goes from qinit to
(x, qgoal

2 ). If both robots simultaneously reach their goals,
then let γ̃ = γ. It is obvious that γ̃ is an L∞-shortest path;
otherwise, γ cannot be Pareto-optimal. Given the canonical
form for L∞-shortest paths, there is a path equivalent to γ̃
that is composed of a finite sequence of Euclidean shortest
segments between the vertices of the obstacle region, qinit,
and the final point of γ̃. Eventually, that part of γ that is
not in γ̃ can be made a Euclidean shortest path. ¤

Lemma 2
Proof sketch: We claim that either J1(τ) ≤ λ or J2(τ) ≤ λ.
Suppose on the contrary, J1(τ) > λ ≥ J1(γ) and J2(τ) >
λ ≥ J2(γ). In that case, γ is a better coordination than
τ . That is contradictory to Pareto-optimality of τ . Suppose
that J1(τ) ≤ λ and R1 reaches its goal first. Once R1 stops
at its goal, robot R2 needs to travel along a roadmap path
whose length is at most the diameter of the free portion of
the roadmap. The free portion of the roadmap is ∆2. Hence,
J2(τ) ≤ J1(τ)+ δ2 ≤ λ+ δ2 because the travel time for both
R1 and R2 is J1(τ) up to the moment R1 stops, and is at
most δ2 for R2 afterwards. Thus, J1(τ), J2(τ) ≤ λ + δ2.

Similarly, J1(τ), J2(τ) ≤ λ + δ1 if J2(τ) ≤ λ and R2

reaches its goal first. Therefore, J1(τ), J2(τ) ≤ λ + δ, in
which δ = max(δ1, δ2). ¤

Theorem 4
Proof sketch: We claim that the upper bound in Section 4.1
is not more than 5` + r. Total length of Σ is at most 4` + r.
Since λ is the length of a path in Σ, λ ≤ 4` + r. Also, δi

are not more than the total length of the roadmap, so δ ≤ `.
Therefore, λ + δ ≤ 5` + r.

Every copy of the fundamental domain contributes at least
b to the distance of a gluing spot from the initial copy of X0.
Since X0 has no more than 2m gluing spots, at most (2m)α

copies of X0 are used in the construction of Y. Therefore, Y
has at most 2αm1+α edges. The number of obstacle vertices
in Y × Y is at most (2m)2αn.

The complexity of our previous acyclic algorithm is
O(mn2 log n) [4]. Since the last step in this algorithm is the

acyclic algorithm applied to Y, which has at most 2αm1+α

edges and (2m)2αn obstacle vertices, the last step, which is
the dominating step, takes
O(25αm1+5αn2 log(m2αn)) time. ¤
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Figure 3: (A) 2-cycle roadmap G. (B) An arbitrary spanning tree of G. (C) The fundamental domain of the universal
cover of G. (D) The universal cover of G.
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Figure 4: The coordination space of the 2-cycle roadmap, in Figure 3, and its universal cover. [left] The coordination
space G × G which is a flat torus. [right] The universal cover of the coordination space.


