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Polygonal Chain Simplification with Small Angle Constraints

Ovidiu Daescu*

Abstract

We consider the problem of simplifying an n-vertex
polygonal chain with small angle constraints in R? and
R3, thus closing the gap on the range of angles left in
previous work on the problem. Specifically, we show
that the min-# version of the polygonal chain sim-
plification problem with small angle constraints can
be solved in O(n?) time and space in R2, and in
O(n?log? n) time, O(n?) space in R3.

1 Introduction

The problem of simplifying a polygonal chain with an-
gle constraints was introduced in [6], and it was defined
as follows: Given a polygonal chain P = (p1,p2,...,0n)
in R? or R3, find another chain P’ = (p;,, Piy, - - Pi,,)
such that (1) 1 = i1 < @2 < ... < iy = n; (2) the
tolerance zone criterion is satisfied for a given tolerance
g > 0: for every j = 1, m — 1 the vertices of the subpath
(Pi;sPij+15- - Pij4, ) of P are within distance € from the
line segment P, p;, ., of P’; (3.min) the turn angle be-
tween any two consecutive line segments p;p; and p;px
of P’ is at least a specified value §(p;p;) € [0,7) (min
turn angle problem); or (3.max) the turn angle between
any two consecutive line segments p;p; and p;pr of P’
is at most a specified value 0(p;p;) € [0,7) (maz turn
angle problem).

The problem was solved in [6] only for a subset of
ranges of the turn angle §, specifically for 6 € [0,7/2)
for the (3.min) constraint and for 6 € [r/2,m) for
the (3.max) constraint. Solving the problem when
0 € [w/2,m) for (3.min) and § € [0,7/2) for (3.max)
remained open. In this paper we close the gap in the
range of 4.

Let ray(p;p;) be the ray originating at p;, extending
the line segment p;p; to infinity and not containing p;p;.
The turn angle between two line segments p;p; and p;px,
is defined as the smallest angle needed to rotate the
ray ray(p;p;) at p; such that it overlaps with the line
segment p;py [6] (see Fig. 1).

Using the tolerance-zone error criterion, the min-#
problem (given an error-tolerance €, minimize m) was
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Figure 1: Angle constraint for the max turn angle prob-
lem in R?: « is a turn angle between p;p; and p;py; the
edges p;p; and P;py, satisfy the angle constraint 6(p;p;).

solved in [6] in O(n?) time and space in R?, and in
O(n?logn) time, O(n?) space, in R®. The min-e prob-
lem (given m, minimize ¢) was solved in O(n?logn)
time and O(n?) space in R?, and in O(n?log®n) time
and O(n?) space in R®. These bounds match the best
known bounds for the unconstrained polygonal chain
simplification problem with the tolerance-zone criterion.

A line segment pip;, 1 < i < j < n, is a valid ap-
proximating segment (also called an e-approximation
segment) if the vertices p;11,...,pj—1 of P are within
distance € of p;p;.

The algorithmic approach in [6] is to construct a di-
rected acyclic graph G, on P containing all valid ap-
proximating segments for the corresponding subpaths of
P and to compute the shortest p;-to-p, path in G, satis-
fying the angle constraint using a dynamic programming
algorithm. G, is constructed in O(n?) time in R? [3,5]
and in O(n?logn) time in R? [2] using the algorithms
for the unconstrained version. The problem of finding
the shortest p;i-to-p, path in G, satisfying the angle
constraint is solved by reduction to a so called off-line
ball exclusion search problem (OLBES) [6].

Results. In this work we close the gap in the range of
possible turn angles by giving solutions for ¢ € [7/2, )
for min turn angle problem and for ¢ € [0, 7/2) for max
turn angle problem. As is the case in [6], the min turn
and max turn problems can be solved using the same
technique, so we discuss the max turn angle version only.
Following the notation of [6], we describe the reduction
of the shortest path problem in G, to a special instance
of the off-line ball inclusion search problem (OLBIS),
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defined in Section 2. We then give solutions to the 1-
dimensional (1D) and 2-dimensional (2D) OLBIS prob-
lems.

Surprisingly, in R3, the time complexity of the so-
lution for small turn angle constraints (maximum turn
angle § € [0,7/2)) seems to be inherently higher by
an O(logn) factor than that for large angle constraints
(maximum turn angle § € [7/2,7)) due to the differ-
ence in time complexity for querying the associated data
structures. Specifically, we solve the min-# problem in
R3 in O(n?log® n) time with O(n?) space. Our solution
for small angle constraints in R? matches the O(n?) time
and space complexities of that in [6].

2 Preliminaries

We use the notations in [6]. Let ACSP;(k) denote the
angle-constrained shortest path from p; to pj, in G), such
that the last segment of AC'SP;(k) is p;ps. At the end
of iteration i, AC'SP;(k) is available for j = 1,7 and k =
J + 1,n. At iteration i+1, from the available AC'SP;(i+

1), 7€ 1,2,...,4, ACSP;11(k) is computed for every
k=1+2,n.

At iteration ¢ + 1 consider ACSP;(i + 1), for some
j € 1,2,...,4. The line segment p;p,y1 is an incom-

ing edge at p;11 in Gp. Let p;y1 be the center of a
unit sphere S;11. Let Cone(j,i + 1) be the cone of
directions at p;+1 satisfying the angle constraint for
DjDit1- An outgoing edge piyipr, with i + 1 < k and
kei+2,i+3,...,n, can succeed p;p; 1 to extend an
angle constrained (shortest) path in G, only if p;yipr
is contained within Cone(j,7 + 1).

Each nonempty Cone(j,i + 1) at pjr1, 7 < i+ 1, is
intersected with S;11; the resulting ball (spherical cap)
is assigned a weight equal to the length of ACSP;(i +
1) (the number of edges of ACSP;(i + 1)). For each
outgoing edge D;y1px at piy1, the ray supporting the
line segment D;+1py is also intersected with S; 1. We
have at most ¢ weighted balls and at most n — ¢ — 1
points. For each point we need to find a minimum-
weight ball on S; 11 such that the point is contained by
the ball. Sorting the balls by their weight and adding
the points at the end of the resulting sequence we obtain
an instance of the OLBIS problem:

OLBIS (Off-Line Ball Inclusion Search): Given
a sequence & = (e1,ea,...,e,) such that each e; is ei-
ther a ball B; or a point p;, for every point pp find
the smallest-index ball B; € {eq,ea,...e,_1} such that
pr. € Bj, or report no such ball exists.

Note that the OLBIS problem is a more general prob-
lem, since in the chain simplification problem the points
appear after all the balls in £.

The main differences between our solutions and those
in [6] are in the construction and querying of the data
structures associated with the OLBIS problem, versus

those for the OLBES problem.

3 The R2 Problem

In R2, the cone projections correspond to intervals (1-
dimensional balls). The 1-dimensional (1D) OLBIS
problem can be solved by a simple greedy algorithm in
O(nlogn) time (see also [1] for the solution to a more
general problem). Specifically, we first sort all points in
the sequence. Then, starting with the first interval in &£,
we locate the left endpoint of that interval in the sorted
list of points and advance along the list until a point
with value greater than the right endpoint of the inter-
val is found. For each encountered point p, if the index
of p in £ is greater than the index of the interval we
report p as included in that interval. Otherwise there is
no interval that contains p and has index smaller than
that of p. The points visited are removed from the se-
quence and the procedure is repeated with the next disk
in .

Lemma 1 Given a sequence £ of n intervals (1-
dimensional balls) and n points on the real line, the
OLBIS answers for all points in £ can be determined
in O(nlogn) time and O(n) space.

For the special case that arises in the min-# problem
we can actually do better.

Lemma 2 For a sequence £ of n intervals (1-
dimensional balls) and n points on the real line such
that (i) the left and right endpoints of the intervals form
sorted sequences and (i) the points appear after all the
intervals in € and are sorted by their values, the OLBIS
answers for all points in € can be found in O(n) time
and space.

Proof. First discard all the points that appear before
the leftmost endpoint of the first interval, as they do
not belong to any interval in £. Then fix the left end-
point of the first interval I; and move along the real line
until the right endpoint of I is found; during this scan,
enqueue the left endpoints of other intervals as they are
encountered. /; is a minimum-index interval including
all the points in £ encountered so far. Next, dequeue
the right endpoint 79 of the next interval and report all
query points encountered before reaching r as belong-
ing to the second interval. If the queue is empty and
there are query points that have not yet been reported,
advance to the first left endpoint available while dis-
carding all encountered query points. This procedure is
repeated until all query points are processed. It requires
one pass along the input sequence and takes O(n) time
and space. O

We then have the following result for the polygonal
chain simplification problem.
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Theorem 3 The polygonal chain simplification prob-
lem with small angle constraints in R? can be solved
in O(n?) time and space.

4 The R® Problem

We start by addressing the OLBIS problem. The key
idea is to decide whether a query point is inside the
union of a set of disks. The combinatorial complexity
of the boundary of the union of n disks in R? is known
to be O(n) [9], and it can be computed in O(nlogn)
time. However, as we will see below, there is no need
to explicitly compute the union of disks to answer the
queries. To decide whether a point is inside the union of
disks, we use a standard transform that lifts a disk onto
the unit paraboloid [7]. The image on the paraboloid of
the circle bounding the disk defines a plane. A point is
inside the disk if and only if its image on the paraboloid
(the point lifted to the paraboloid) is below the plane.
We call the halfspace defined by this plane and contain-
ing the image of the points inside the disk a proper half-
space. Consider the union of the corresponding proper
halfspaces. Its intersection with the paraboloid and pro-
jected back to the plane gives the union of disks. The
complement of this union is the intersection of a set of
halfspaces, that is, a convex polytope. A point is inside
the union of disks if it is outside this convex polytope.

Lemma 4 Given a sequence £ of n disks and n points,
the OLBIS answers for all points in £ can be determined
in O(nlog®n) time and O(nlogn) space.

Proof. We construct a complete binary tree 7. Each
leaf of T' is associated with the complement of the proper
halfspace for a disk D; from £ in order (i.e., the half-
space for D, is associated with the leftmost leaf, the
second leaf from left is for the halfspace for Dy, and so
on). At each internal node v we compute and store I(v),
the intersection of the halfspaces stored at the leaves of
the subtree of T rooted at v. We also compute and store
the index i(v) of the rightmost leaf of the subtree rooted
at the left child of v.

The intersection of half-spaces associated with the
root of T is computed in divide-and-conquer fashion
using the linear-time algorithm for intersecting three-
dimensional convex polyhedra [4] and corresponds to
a bottom-up computation in 7. The intermediate re-
sults of the divide-and-conquer algorithm are intersec-
tions of halfspaces associated with internal nodes of T’
and are stored at those nodes. Thus, over all internal
nodes v € T, we can compute and store the intersec-
tions of halfspaces in O(nlogn) time using O(nlogn)
space. Assigning i(v) to each node v € T can be done
in O(n) time by a simple traversal of T. An n vertex
polyhedron can be preprocessed for O(logn) time point

inclusion queries in O(n) time and space [8]. We pre-
process the polyhedra associated with the nodes of T
for point location queries.

The OLBIS queries for the points in £ are answered as
follows (all points are queried simultaneously). Let root
be the root of T', let left(root) be the left child of the
root, and let right(root) be the right child of the root.
We select the points that fall outside I(root) (i.e. the
points that are inside of at least one disk) and partition
the selected points based on inclusion in I(left(root)).
The points that are outside I(left(root)) are given to
the search on the subtree rooted at left(root); the re-
maining points become input for the search on the sub-
tree rooted at right(root) with the only reservation that
if a query point in the input set for right(root) has a
smaller index than the index of the rightmost leaf in the
subtree rooted at le ft(root) then this point does not be-
long to any disk preceding it in £ and can be dropped.

Using point location queries it takes O(logn) time
to answer an inclusion query in I(v) at each level of
T. There are O(logn) levels in T, giving O(log®n)
query time for one point. Then, the general 2D
OLBIS problem can be solved in O(nlog®n) time with
O(nlogn) space. O

Notice that the extra O(logn) factor in time complex-
ity, when compared to [6], is due to the query processing.
We then obtain the following result for the polygonal
chain simplification problem.

Theorem 5 The min-# problem with angle constraints
in R3 can be solved in O(n*log®n) time and O(n?)
space.

For the related min-e problem we obtain:

Theorem 6 The min-¢ problem with angle constraints
can be solved in O(n?logn) time and O(n?) space in R?
and in O(n?log* n) time, O(n?) space in R>.

5 Conclusions

In this paper we presented solutions for the polygo-
nal chain approximation problem with small angle con-
straints, thus closing the gap on the range of angles
left in previous work [6]. Our solution for small angle
constraints in R? matches the O(n?) time and space
complexities of that in [6].

Surprisingly, in R®, the time complexity of the so-
lution for small turn angle constraints is higher by an
O(logn) factor than that for large angle constraints [6)
due to an extra O(logn) factor in processing queries.
We leave the elimination of the extra O(logn) factor in
this case as an open problem.
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