
CCCG 2008, Montréal, Québec, August 13–15, 2008

Memory Requirements for Local Geometric Routing and Traversal in
Digraphs

M. Fraser ∗ E. Kranakis † J. Urrutia ‡

Abstract

Local route discovery in geometric, strongly connected,
undirected plane graphs is guaranteed by the Face Rout-
ing algorithm. The algorithm is local and geometric in
the sense that it is executed by an agent moving along a
network and using at each node only information about
the current node (incl. its position) and a finite num-
ber of others (independent of graph size). Local ge-
ometric traversal algorithms also exist for undirected
plane graphs. In this paper we show that no compa-
rable routing or traversal algorithms exist for the class
of strongly connected plane directed graphs (digraphs).
We construct a class of digraphs embedded in the plane
for which either local routing or local traversal requires
Ω(n) memory bits, where n is the order of the graph.
We discuss these results in light of finding a suitable
model for mobile ad hoc networks with uni-directional
edges, showing in the extended version of this paper
that digraphs for which the Ω(n) lower bound holds oc-
cur even in the class of embedded digraphs arising out
of a very conservative model.

1 Introduction

Face Routing was proposed in [9] as an algorithm that
accomplishes discovery of routes locally in geometrically
embedded, undirected planar graphs. It guarantees de-
livery in time O(n) where n is the order of the graph.
Since its introduction in 1999, there have been various
studies extending the class of graphs over which varia-
tions of this algorithm can be applied. In the 2D undi-
rected case, these are enough to handle most graphs oc-
curing as models of 2D mobile adhoc networks: Quasi-
Planar graphs, Unit Disk Graphs (see survey in [11])
and so called Quasi-Unit Disk Graphs (with radial co-
efficient d > 1√

2
).

Traversal alogorithms have also been well studied for

∗Mathematics Dept., University of Colima, Colima, MEX-
ICO.fraser.maia@gmail.com

†Schoool of Computer Science, Carleton University, Ottawa,
CANADA. Research supported in part by NSERC and MITACS
grants, kranakis@scs.carleton.ca

‡Inst. of Mathematics, National Autonomous University of
Mexico (UNAM), Mexico City, MEXICO, Research supported
in part by MTM2006-03909 (Spain) and CONACYT of Mexico,
Proyecto SEP-2004-Co1-45876, urrutia@matem.unam.mx

undirected graphs in the plane. For example, for planar
embedded graphs [4] and quasi-planar subdvisions [3]
local geometric algorithms are known.

In the 3D case relatively little has been done un-
til now. Recently M. Fraser extended Face Routing
to undirected graphs embedded on known surfaces of
higher genus [8] and Durocher et al. [5] extended it to
Unit Ball Graphs (UBG’s) with nodes bounded within a
relatively thin slab of space (of thickness at most 1/

√
2).

Also a recent paper by R. Wattenhofer [6] proposes a
partially randomized routing algorithm for 3D ad hoc
networks.

There has also been little progress on the 2D directed
case. Some special classes of 2D directed graphs for
which local geometric routing algorithms are known in-
clude Eulerian and Outerplanar digraphs [2]. The ques-
tion of existence of local geometric algorithms for gen-
eral geometric digraphs has remained open.

It is important to note that there are several varia-
tions in the use of the term “local” in the ad-hoc com-
munity. In this paper, by a local algorithm we mean a
deterministic algorithm in which an agent moving along
the network uses at each node only information stored
at that node concerning the node itself and its neigh-
bours (including current position) together with a cer-
tain amount M of memory which is carried as overhead
in the message. No further information regarding the
rest of the network is available to the agent, e.g. nei-
ther the number of nodes, where they are located, the
topology of the network, nor any other global informa-
tion. The agent is not allowed to alter the state of a
node.

In Face Routing, messages are allowed to carry with
them the ID’s (or typically the positions) of sender and
destination as well as two other nodes and a number
representing a distance. This means M has typically
been restricted to O(log n). Upon arrival to a node, a
message can use the local information stored at a node
plus the information it carries along.

We show that planar embedded directed graphs (di-
graphs), unlike their undirected counterparts, do not
admit local geometric routing or traversal algorithms
with carried memory M ∈ O(log n) (for non-geometric
digraphs the corresponding result for traversal was
shown by Fraigniaud and Ilcinkis [7]). We show this by
constructing a class C of embedded digraphs for which

20th Canadian Conference on Computational Geometry, 2008

either geometric traversal or route discovery requires
Ω(n) memory bits.

It is important to notice that in practice, many wire-
less and ad-hoc networks do have oriented links. If a
network has transmitters with different broadcast pow-
ers, it may happen that a node can receive messages
from a node to which it cannot send.

In the extended version of this paper we describe a
Face-Routing-like routing algorithm which is correct for
plane digraphs and is executed by an agent carrying
O(n) memory.

Our main objective in this paper is to prove the fol-
lowing result:

Theorem 1 There is a class of bounded degree (i.e.,
both in-degree and out-degree) strongly connected em-
bedded digraphs in the plane for which no deterministic
local traversal or routing algorithm (even a geometric
one) exists. In particular, if n is the number of vertices
of a graph in this class then every traversal or routing
algorithm on the graph requires Ω(n) bits of memory.

2 Main Result

To construct a class with the properties stated in The-
orem 1, we define for each n ∈ N an embedded digraph,
called a random lock, which is a “randomized” embed-
ding of a bounded-degree variation on the combination
lock (combination locks have unbounded in-degree, i.e.,
Θ(n), see [7]). To this end we define a kinked embedded
lock.

Definition 2.1 [Kinked Embedded Lock] Let x =
x1x2 · · ·xn−1 be any bit string of length n−1 (notational
warning: we start with index 1). Suppose the 1 bits of
x occur for indices i0, . . . , ik and the 0 bits for indices
j0, . . . , jK . A kinked embedded lock determined by x is
an embedded digraph ϕ(Hx) where Hx = (V̄x, Ēx ∪ {e})
is an abstract digraph with

• set of vertices V̄x =
{u0, u1, u2, . . . , un−1, un, w, v1, v2, . . . , vn−1},

• set of directed edges Ēx = E′
n ∪ E′′

n where, E′
n =

{(ui, ui+1) : 0 ≤ i ≤ n − 1} ∪ {(ui, vi) : 1 ≤
i ≤ n − 1} and E′′

n = {(un, vik
), (un, vjK

)} ∪
{(viq , viq−1) : 1 ≤ q ≤ k} ∪ {(vjq , vjq−1) : 1 ≤ q ≤
K} ∪ {(vi0 , v0), (vj0 , v0)}1,

• and one bi-directional edge e = (un, w),

and ϕ is any embedding ϕ : Hx → R2 satisfying the
following recursive relation:

• ϕ(u0) = (0, 0), ϕ(u1) = (1, 0) and

• for 1 ≤ i ≤ n− 1 if ui has coordinates (a, b) then:
1where undefined elements are assumed omitted

ϕ(ui+1) = (a + 1, b + 1), ϕ(vi) = (a + 1, b− 1)
for xi = 0, and

ϕ(ui+1) = (a + 1, b− 1), ϕ(vi) = (a + 1, b + 1)
for xi = 1,

and ϕ(w) = (n + 1, 0), with all edges being straight
line segments. We denote by Kx the kinked embedded
lock determined by x.

Note that the order of the kinked embedded lock Kx

determined by an (n− 1)-bit string x is |Kx| = 2n + 1.
It is easily checked that ϕ as described is an embedding
(i.e. that there are no edge crossings).

Figure 1: An example of the requirements on ϕ(E′
n) for

the string x = 0111.

An example of the requirements on ϕ for the string
x = 0111 is depicted in Figure 1. This figure includes
only the edges ϕ(E′

n).
The full embedded digraph ϕ(Hx) is obtained from

the one shown in Figure 1 by adding embedded directed
edges from ϕ(E′′

n), namely adding edges “all along the
top” and “all along the bottom” (to connect subsequent
upper vertices viq and subsequent lower vertices vjq as
given by E′′

n) and then adding the bi-directional edge e
connecting w to un. This is depicted in Figure 2. Note
that the position of ϕ(w) does not depend on the actual
bit string x, just on n.

Figure 2: The kinked embedded lock Kx determined by
the bit string x = 0111.

CCCG 2008, Montréal, Québec, August 13–15, 2008

We will now show that if we use random bit strings
to construct kinked embedded locks we obtain a class
of geometrically embedded digraphs – random locks –
which satisfy the requirements of the theorem. The idea
is that any traversal or routing algorithm, A, on such
graphs must be able to reach w from u0 knowing at
most the positions of these two points and local infor-
mation. To do so, it must be able to reach un using only
this data. This allows one to generate the underlying
random bit string and the desired lower bound follows.

Proof. (of Theorem 1) Let x be an infinite Kol-
mogorov random (i.e. algorithmically random) bit
string x = x1x2 . . . (notational warning: we start with
index 1). Then for any n ∈ N, xn := x1x2 · · ·xn has
Kolmogorov complexity at least n. In other words, any
algorithm which can generate this string has space com-
plexity at least n.

Let C = {Kxn : n ∈ N} be the set of kinked embedded
graphs determined by all finite initial substrings of x. C
consists of bounded-degree embedded digraphs. We call
these random locks. Recall that |Kxn−1 | = 2n + 1, so
the order of these graphs is linear in n.

Assume that A is a correct geometric traversal or
routing algorithm for C using memory M(n) bits of
(transported and working) memory for the random lock
Kxn−1 ∈ C determined by the (n − 1)-bit string xn−1.
Since the size of these graphs is linear in n we need only
show M(n) ∈ Ω(n).

Starting at u0, A must in particular be able to reach
w using only local geometric data (coordinates of cur-
rent node and its neighbours) plus M(n) bits of mem-
ory, which may include local geometric data gathered
along its route (coordinates of vertices visited and their
neighbours) or even coordinates of w (in the case of a
routing algorithm) . Note that knowing the coordinates
of w just corresponds to knowing n + 1.

To reach w from u0, A must eventually – i.e. at some
time T – be at u1 and then follow exactly the path
u1, u2, . . . un, w. To be precise, let T be the time just
before computing an exit vertex at u1 and let ST be
the state of A at this time, i.e. the stored memory at
this moment including the current line number LT that
has just been executed at this time in the program P
encodingA. Storing ST requires memory at most M(n).

Let G be an efficient algorithm which given a pair of
positive integers (x, y) and a bit b calculates (x, y), (x+
1, y+1−2b), (x+2, y+2−2b), (x+2, y−2b). We may as-
sume G has space complexity linear in the size of (x, y).
If we assume the numbers x, y ≤ n, then the space com-
plexity of G is O(log n). Note that G is essentially a
geometry simulator for A as long as A travels along a
path consisting of only ui’s. More precisely, whenever
A is at some ui for which it will next advance to ui+1, if

it passes to G the coordinates of ui and the value 0 or 1
indicating its decision at ui (to turn respectively up or
down) then G will output the coordinates of ui+1 and
of all its neighbours. This is in fact all the geometric
data that the algorithm A can use to make its decision
at ui+1.

Using A and G, we now define an algorithm B of
space complexity M(n) + O(log n) which generates the
bit string xn. This includes the constant overhead to
store instructions for all three algorithms (incl. passing
of data between them, conversion of left/right instruc-
tions to bits etc...).

The algorithm B takes input ST, F = n− 1. Its work-
ing data will include the coordinates of four points in
the plane: ucurr and uleft, urightUp, urightDn. It ini-
tializes these to (1, 0), (0, 0), (2, 1), (2,−1) respectively,
these being the coordinates of u1, u0 and the upper then
lower of u2, v1. The algorithm then proceeds as follows:

1. Set i = 1. Place A in state ST.

2. Run A for a single iteration giving it local pseudo-
geometric data ucurr, uleft, urightUp, urightDn
in order to generate a bit b encoding whether it
will turn upwards or downwards (b = 0 or 1 respec-
tively). This corresponds to deciding which of the
two neighbours to the right is labelled u2.

3. Output b. If i ≥ F , exit; else increment i by one.

4. Call G with input ucurr and b. Let its output be
used to set uleft, ucurr, urightUp, urightDn re-
spectively. Go to 2.

Recall that when the algorithm A is started in state ST

using local geometric data from u1, it performs exactly
the run u1, u2, . . . , un−1. Thus the output of B will be
exactly the bit string xn. Since the complexity of B
is M(n) + O(log n), and xn is Kolmogorov random we
must have M(n) ∈ Ω(n). �

k-Locality We remark that a k-local version of The-
orem 1 also holds: namely, even a geometric routing
or traversal algorithm with access to geometric data
k hops away from its current location (k, any fixed
positive integer) requires Ω(n) memory bits. This is
proved by inserting k extra vertices on each of the edges
{(u0, u1), (ui, vi), (ui, ui+1) : i ∈ N, 1 ≤ i ≤ n − 1} (i.e.
k-subdividing these edges) in the random locks above
and adjusting the geometry simulator accordingly so as
to generate these extra points as well.

Remark In fact, it is easy to construct another class C′
of digraphs which can be used to prove Theorem 1 and
which consists of plane digraphs arising from wireless
networks with just two different broadcast radii. We
discuss this further in the extended version of this paper.

20th Canadian Conference on Computational Geometry, 2008

3 Conclusions

Since the introduction of Face Routing, considerable ef-
forts have been made trying to extend it to wider fami-
lies of networks. The robustness and simplicity of Face
Routing make it a tantalizing model to strive for, as
the computational requirements in network communi-
cations are thus greatly reduced, e.g. drastic reduc-
tions on the amount of traffic, and the elimination of
costly mechanisms such as routing tables that have to
be updated periodically [11]. It is worth mentioning
here that the locality condition, as stated here, implies
a robustness beyond existing modes; since a message is
not aware of the existence of most nodes of a network,
it is unaffected by their potential failures (as long as the
network remains connected).

Especially, it would be desirable to achieve these
properties of Face Routing for cellular networks in R3 or
directed networks as these settings are a reality in tele-
phony and sensor networks nowadays. Unfortunately,
extending Face Routing beyond undirected networks in
the plane has proved to be a formidable task, and all
the evidence suggests it may not be possible. As far as
we know, this is the first result that proves some intrin-
sic limitations of the model. The results presented here
might give a hint as to why previous attempts have been
unsuccessful, and might in fact dictate restrictions that
should be imposed on wireless and, in general, commu-
nication networks to take full advantage of the benefits
of Face Routing.

References

[1] P. Bose, P. Morin, I. Stojmenic, and J. Urrutia, Routing
with guaranteed delivery in ad hoc wireless networks. In
3rd Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communication (DIALM ’99),
pp. 48-55 (1999).

[2] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Sta-
cho, J. Urrutia, Route Discovery with Constant Mem-
ory in Oriented Planar Geometric Networks. Networks,
Volume 48, Issue 1, pages 7-15.

[3] E. Chavez, S. Dobrev, E. Kranakis, J. Opatrny, L. Sta-
cho, J. Urrutia Traversal of a quasi-planar subdivision
without using mark bits. Journal of Interconnection Net-
works Vol. 5, Issue 4, pp. 395 - 407, 2004.

[4] M. de Berg, M. van Kreveld, R. van Oostrum, and M.
Overmars. Simple traversal of a subdivision without ex-
tra storage. International Journal of Geographic Infor-
mation Systems, 11:359373, 1997.

[5] S. Durocher, D. Kirkpatrick, L. Narayanan, On Routing
with Guaranteed Delivery in Three-Dimensional Ad Hoc
Wireless Networks. In proceedings of ICDCN 2008.

[6] R. Flury and R. Wattenhofer, Randomized 3D Ge-
ographic Routing. In 27th Annual IEEE Conference
on Computer Communications (INFOCOM), Phoenix,
USA, April 2008.

[7] P. Fraigniaud and D. Ilcinkas, Digraphs Exploration
with Little Memory. In 21st Symposium on Theoreti-
cal Aspects of Computer Science (STACS’04), LNCS
2296, pages 246-257, 2004.

[8] M. Fraser, Local Routing on Tori. In Proceedings of AD-
HOCNOW, held in Morelia Mexico, Sep 24-26, 2007,
pp. 1- 14, Springer LNCS 4686, 2007.

[9] E. Kranakis, H. Singh, J. Urrutia, Compass Routing
in Geometric Graphs, in proceedings of 11th Cana-
dian Conference on Computational Geometry, CCCG-
99, pages 51-54, Vancouver Aug. 15-18, 1999.

[10] I. Stojmenovic, Position based routing in ad hoc net-
works. IEEE Comm. 40 (2002) 128-134.

[11] J. Urrutia, Local solutions for global problems in wire-
less networks. Journal of Discrete Algorithms, 5, pp.
395-407, 2007.

