
CCCG 2008, Montréal, Québec, August 13–15, 2008

A Distributed Algorithm for Computing Voronoi Diagram in the Unit Disk
Graph Model

Yurai Núñez-Rodŕıguez(1) Henry Xiao(1) Kamrul Islam(1) Waleed Alsalih(1)

(1)Queen’s University(yurai/xiao/islam/waleed@cs.queensu.ca)

School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6

Abstract

We study the problem of computing Voronoi diagrams
distributedly for a set of nodes of a network modeled
as a Unit Disk Graph (UDG). We present an algorithm
to solve this problem efficiently, which has direct ap-
plications in wireless networks. Comparing with some
existing algorithms, our algorithm correctly computes
the complete Voronoi diagram and uses a significantly
smaller number of transmissions. Furthermore, useful
geometric structures such as the Delaunay triangula-
tion and the convex hull can be obtained through our
algorithm.

1 Introduction

With the recent wave of research in wireless networks,
geometric structures like the Voronoi Diagram (VD)
have been studied in different computational platforms
such as mobile devices and sensors [11, 10, 2]. These de-
vices have limited battery power and usually cooperate
with each other without a centralized control. Given a
set of n points in the plane, it is known that the VD can
be computed in O(n log n) time in a centralized fash-
ion (see Fortune’s algorithm for an example [6]). In a
distributed setting, computing the VD introduces new
challenges [4, 5, 10, 11, 2].

We investigate the problem of distributedly comput-
ing the VD of a network where the nodes are modeled
as points in the plane. Our main goal is to compute the
accurate VD while minimizing the communication cost.
The communication cost is proportional to the number
of transmissions between two adjacent nodes. We pro-
pose a distributed algorithm to compute the VD of a
connected network. Our approach is purely based on
cooperation among nodes. A preliminary version of our
work has been announced in [1].

Throughout this paper, a network is modeled as a
Unit Disk Graph (UDG). According to this model, an
edge between two nodes v and w exists if and only if
the Euclidean distance between v and w is not greater
than one unit (normalized). We assume that the in-
duced UDG is connected. The nodes are also assumed

a

b

c

a

b

c

a

b

c

a

b

c

Figure 1: Voronoi diagrams of a set of nodes. Edges
between nodes are represented by dashed lines. The
bounded VD (left) and the complete VD (right).

to know their geographic locations. This is usually
achieved through GPS or other techniques [9, 7]. The
communication of the network is not required to be syn-
chronous.

In recent attempts to design distributed algorithms
for computing the VD, Bash and Desnoyers [2] proposed
an algorithm to compute the bounded VD (see Figure 1)
utilizing the GPSR routing protocol ([3, 8]) for wireless
sensor networks. The basic idea is to successively refine
the approximations of the Voronoi cells upon discovery
of other sensors in the network. Given a sensor s, their
algorithm starts with the entire bounded region as the
approximation of the Voronoi cell of s. A probing mes-
sage is then sent to each of the vertices of the current
Voronoi cell using GPSR, which will be delivered to a
sensor t that is the nearest to the probed vertex. Sen-
sor t replies to s and the current Voronoi cell of s is
refined with respect to t. No more probes are sent by
s once it becomes the nearest sensor to all its Voronoi
vertices. Bash and Desnoyers’ algorithm [2] is referred
to as BD071 in this paper.

In the following, we describe our distributed algo-
rithm for computing the VD and prove its correctness.
We further discuss more practical environments where
the correctness of our algorithm holds. Some of our sim-
ulation results in comparison with BD07 are presented
in Section 4.

1Limited by the space, optimizations of BD07 are not reviewed
here.

20th Canadian Conference on Computational Geometry, 2008

2 Distributed Computation of Voronoi Diagram

We propose a distributed algorithm, namely the com-
pletely cooperative (CC) algorithm, for computing the
VD of a set of nodes in the plane. Recall that the net-
work is modeled as a UDG. The nodes are assumed to
be in general position2.

2.1 The CC algorithm

The basic idea behind the CC algorithm is that nodes
do not need to send out queries to discover their Voronoi
neighbours; instead, nodes are informed about possible
Voronoi neighbours by other neighbours. We adopt the
following terminology. Let S be a set of nodes embedded
in the plane and let G = (S,L) be the connected UDG
induced by S, where L ⊆ S × S contains pairs of nodes
that are within unit distance. Let V D(G) be the VD
of G. We refer to an element of S as a node and an
element of L as a link, saving the terms vertex and edge
for the corresponding elements in the VD. Similarly, we
refer to nodes that share a link as adjacent and to nodes
that share a Voronoi edge as neighbours.

Let s be a node that receives a message about a po-
tential (Voronoi) neighbour, t, at some point during the
computation. Then s computes the intersection of its
current cell, C, with the half plane defined by the bisec-
tor between itself and t. We call this step the refinement
of a cell. If the new cell C ′ resulting from the intersec-
tion is equal to C, t is ignored; otherwise (C ′ ⊂ C), t
becomes a neighbour of s. In the latter case, new ver-
tices appear on C ′ and some vertices of C fall outside of
C ′. Figure 2a illustrates the refinement process. Two
adjacent vertices that fall outside of C ′, define a piece
of bisector for a node t2 that is then discarded. A new
vertex v on C ′ is created by the intersection of the bisec-
tor between s and t, and the bisector between a certain
node t1 and s. Therefore, t and t1 may be neighbours
of each other since they have a common Voronoi vertex
according to the cell of s. Consequently, s informs both
t and t1 about each other. This way, the information
about possible neighbours flows towards the correspond-
ing nodes until each node finds all its neighbours.

Initially, the cell of any node s is equal to the entire
plane. Then all nodes broadcast their locations trigger-
ing the entire computation as explained above.

Algorithm 1 is a pseudocode description of the
CC algorithm. In the description of the algorithm,
node s has location s.loc, a field s.cell that stores
the description of its Voronoi cell, and a message
queue s.q. The refinement of s.cell with respect
to t is done through s.refine(t.loc). The method
send message(t1.loc, t2.loc) sends a message to node t1

2No three nodes are collinear and no four nodes fall on the
same circle

(a) Cell Refinement (node s
discovers node t)

(b) Disconnected Node

Figure 2: Illustration of the CC algorithm.

containing the location of t2 and results in t2.loc be-
ing added to the message queue of t1 (i.e., t1.q). Ver-
tices in s.cell can be accessed through s.cell.verts. A
vertex v of a Voronoi cell is equipped with a method
v.third(s.loc, t.loc) that returns the location of the third
node associated to v that is neither s nor t.

Algorithm 1: Completely Cooperative (CC)
// Initialize the cell
s.cell = ENTIRE_SPACE
// Broadcast the node location to all adjacent nodes
s.send_message(BROADCAST, s.loc)
// Process each (node) message in the queue
while(t.loc = s.q.get_message)

old_Cell = s.cell
s.cell = s.refine(t.loc)
for each(v in s.cell.verts and not in old_Cell.verts)

// Notify each pair of possible neighbours about each other
s.send_message(t.loc, v.third(s.loc, t.loc))
s.send_message(v.third(s.loc, t.loc), t.loc)

end
end

2.2 Proof of correctness

Theorem 1 Let G be the induced UDG of a set of
nodes in the plane. The CC algorithm computes the
correct Voronoi cell of every node in G.

Proof. The reader is referred to Figure 2b for a graph-
ical description of this proof. It is not hard to see that
the algorithm terminates after a finite number of steps
given that every message sent is the result of the refine-
ment of a cell whose area has decreased. Therefore, the
computation ends as the approximations of the Voronoi
cells converge to the correct cells.

In order to prove that the algorithm determines the
correct cells, suppose, for the sake of contradiction, that
the Voronoi cell corresponding to a node s0, was not
properly determined. This means that s0 did not find
at least one of its (Voronoi) neighbours. Let s1 be a
neighbour of s0 that was not discovered by the applica-
tion of Algorithm 1 to s0. It would be a contradiction
that (s0, s1) ∈ L since adjacent nodes know about each
other and must have been neighbours from the initial

CCCG 2008, Montréal, Québec, August 13–15, 2008

refinements. Therefore, we assume that there is no link
between s0 and s1.

Let b(s0, s1) be the edge of V D(G) corresponding to
the bisector between s0 and s1. Note that VD edges
are segments, lines, or semilines. b(s0, s1) can be a line
only if |S| = 2, but since there is no link between s0
and s1, G would not be connected, which is a contradic-
tion. Therefore, b(s0, s1) must be a segment or a semi-
line. In both cases b(s0, s1) has at least one end point
(v(s0, s1, s2)) that is a Voronoi vertex of the cells asso-
ciated to s0, s1, and a third node s2. The CC algorithm
guarantees that s2 informs s0 and s1 about each other
once the corresponding bisectors have been considered
and the intersection point (v(s0, s1, s2)) has been found.
Since s0 and s1 were not informed about each other, one
of three possible cases must have occurred: s2 did not
find s0, or s1, or both. Without loss of generality, we
assume that s2 did not find s1. The same reasoning ap-
plied to s0 and s1 can be applied to s1, s2 and a third
node s3 6= s0. This process can be repeated until one
of two stop conditions is satisfied: (1) a cycle is created
when a vertex is involved twice, (2) a semiline bisector
in V D(G) is reached. If this process ends with a semi-
line between two unbounded cells, the same procedure
is applied starting at the other endpoint of b(s0, s1), if
any. This process again ends because of condition (1)
or (2).

In the end, this process leads to a cycle or path P
consisting of missing Voronoi edges that partitions the
plane into two disjoint regions and is not crossed by any
link between neighbours. It is not hard to see that if P
is not crossed by any link between neighbours, it can
not be crossed by any other link, given that G is the in-
duced UDG. Therefore, G would have two disconnected
subgraphs (one in each region) which contradicts the
initial assumption. �

2.3 Optimizations

The CC algorithm is described in its simplest form.
Some optimizations can be introduced to make it more
efficient. First of all, before the initial refinements, ev-
ery node s broadcasts its adjacency list. Every message
that involves s includes its adjacency list. If a node r,
that is about to inform two nodes s and t about each
other, finds s (resp. t) in the adjacency list of t (resp.
s), no notification is sent. This remarkably reduces the
number of transmissions. However, some lists of ad-
jacency can be significantly large. So only the infor-
mation of a bounded number of adjacent nodes is sent
along. We have set this bound to 6 for our experiments.
The second key optimization consists in not sending two
messages simultaneously to possible neighbours s and t
while trying to inform them about each other. Instead,
a message is first sent to s and then it is s that informs
t, if required. This also reduces the number of messages

since s and t may already be neighbours by the time s
receives the notification and, consequently, there is no
need to inform t.

3 Discussion and Extensions

Compared to BD07, the CC algorithm computes the
complete VD. The CC algorithm also provides the com-
plete Delaunay triangulation and the convex hull with-
out additional communication. After the computation
of the VD, a node that has two consecutive neighbours
separated by an angle larger than π is on the outer face
of the Delaunay triangulation and, therefore, on the con-
vex hull.

The CC algorithm does not rely on any specific rout-
ing algorithm. Also, according to experimental results
(see Section 4), the CC algorithm uses a smaller number
of transmissions. Recall BD07 relies on the GPSR rout-
ing protocol. For the sake of fairness, we use GPSR as
the underlying routing protocol for the CC algorithm as
well. We believe that with a better routing algorithm,
the CC algorithm may further reduce the number of
transmissions.

From a practical point of view, it is desirable to ex-
tend the underlying model beyond UDG. We can ex-
tend the scope of Theorem 1, with slight modifications,
to more general graphs. Let G′ be an arbitrary network
obtained from G by removing links, and let DT (G′) be
the subgraph of G′ that contains only the links of G′

that are edges of the Delaunay triangulation of S. The-
orem 2 shows that as long as DT (G′) is connected, the
CC algorithm computes the VD correctly.

Theorem 2 Let G′ be a subgraph of G, such that
V (G′) = S and DT (G′) is connected. The CC algo-
rithm computes the correct Voronoi cell of every node
in G′.

Proof. The proof is similar to the proof of Theorem 1.
Once the cycle or path P is found, by assuming that the
VD was not properly constructed, a contradiction arises
with respect to the connectivity of DT (G′). In this case
no link of DT (G′) crosses P while DT (G′) should be
connected. �

4 Simulation Results

We have conducted intensive simulations on randomly
generated networks to study the performance of the CC
algorithm and compare the results with the BD07 algo-
rithm [2].

Experiments were done with test sets consisting of
100 nodes randomly placed in a 100 × 100 unit grid.
The density of the graph is controled by different trans-
mission ranges (14 to 30 units). Also two different error
rates, 0% and 20% are considered. The error rate is

20th Canadian Conference on Computational Geometry, 2008

the probability of a transmission to fail. Hence, when
a link temporarily fails, the transmission is repeated.
For each transmission range and each error rate two al-
gorithms (CC and BD07) are run with 1000 randomly
generated networks as defined above. We also incorpo-
rate 50 randomly placed opaque obstacles in the form
of bars of length 5. Special care is taken such that each
graph generated contains a connected subgraph of the
Delaunay triangulation as required by Theorem 2.

The entire number of simulations per algorithm is
equal to [number of networks] × [number of transmis-
sion ranges] × [number of error rates] = 1000×17×2 =
34, 000.

The graphs shown in Figures 3a and 3b provide the
total number of transmissions in average for each trans-
mission range with 0% and 20% error rates. For small
values of the transmission range, BD07 requires a much
larger number of transmissions than the CC algorithm.
This is because the network is sparser and the GPSR
protocol performs poorly. Because the CC algorithm
does not require probing, it is not as affected as BD07
by small transmission ranges.

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
vg

. N
um

be
r

O
f T

ra
ns

m
is

si
on

s

Transmission Range

CC
BD07

(a) 0% error rate

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
vg

. N
um

be
r

O
f T

ra
ns

m
is

si
on

s

Transmission Range

CC
BD07

(b) 20% error rate

Figure 3: Simulation results.

5 Conclusion

We propose a novel distributed algorithm to compute
the VD of a given network. The CC algorithm of-
fers two significant advantages over previous works: (1)
it computes the complete VD, and thus, can provide

other useful structures such as the Delaunay triangula-
tion and the convex hull; (2) it is more efficient in terms
of the number of transmissions as verified through a
large number of simulations.

Interesting problems remain open regarding the dis-
tributed construction of the VD. A natural question is
whether it is possible to find a non-trivial efficient dis-
tributed algorithm for constructing the VD of arbitrar-
ily connected networks.

Acknowledgments

We thank Selim Akl and David Rappaport for discus-
sions and comments.

References

[1] W. Alsalih, K. Islam, Y. Núñez-Rodŕıguez, and H. Xiao.
Distributed voronoi diagram computation in wireless
sensor networks. In SPAA ’08: 20th ACM Symposium
on Parallelism in Algorithms and Architectures, Mu-
nich, Germany, June 2008.

[2] B. A. Bash and P. J. Desnoyers. Exact distributed
voronoi cell computation in sensor networks. In IPSN
’07: Proceedings of the 6th international conference on
Information processing in sensor networks, pages 236–
243, New York, NY, USA, 2007. ACM Press.

[3] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Rout-
ing with guaranteed delivery in ad hoc wireless net-
works. Wireless Networks, 7(6):609–616, 2001.

[4] J. Byers, J. Considine, and M. Mitzenmacher. Geomet-
ric generalizations of the power of two choices. In 16th
ACM Symp. on Parallel Algorithms and Architectures,
2004.

[5] W. Chen, J. Hou, and L. Sha. Dynamic clustering
for acoustic target tracking in wireless sensor networks.
IEEE Transaction on Mobile Computing, 3(3):258–271,
2004.

[6] S. Fortune. A sweepline algorithm for voronoi diagrams.
In SCG ’86: 2nd Annual Symposium on Computational
Geometry, pages 313–322. ACM Press, 1986.

[7] L. Girod and D. Estrin. Robust range estimation using
acoustic and multimodal sensing. In IEEE/RSJ Con-
ference on Intelligent Robots and Systems, 2001.

[8] B. Karp and H. T. Kung. GPSR: greedy perimeter
stateless routing for wireless networks. In ACM Mobi-
Com, pages 243–254, 2000.

[9] N. Priyantha, A. Chakraborty, and H. Balakrishnan.
The cricket location-support system. In 6th Annual In-
ternational Conference on Mobile Computing and net-
working, pages 32–43, New York, NY, USA, 2000.

[10] M. Sharifzadeh and C. Shahabi. Supporting spatial ag-
gregation in sensor network databases. In 12th Inter-
national Symposium of ACM GIS, 2004.

[11] Z. Zhou, S. Das, and H. Gupta. Variable radii connected
sensor cover in sensor networks. In IEEE SECON, 2004.

