
CCCG 2008, Montréal, Québec, August 13–15, 2008

A Framework for Multi-Core Implementations of Divide and Conquer

Algorithms and its Application to the Convex Hull Problem ∗

Stefan Näher Daniel Schmitt †

Abstract

We present a framework for multi-core implementations
of divide and conquer algorithms and show its efficiency
and ease of use by applying it to the fundamental geo-
metric problem of computing the convex hull of a point
set. We concentrate on the Quickhull algorithm intro-
duced in [2]. In general the framework can easily be
used for any D&C-algorithm. It is only required that
the algorithm is implemented by a C++ class imple-
menting the job-interface introduced in section 3 of this
paper.

1 Introduction

Performance gain in computing is no longer achieved
by increasing cpu clock rates but by multiple cpu cores
working on shared memory and a common cache. In
order to benefit from this development software has to
exploit parallelism by multi-threaded programming. In
this paper we present a framework for the parallelization
of divide and conquer algorithms and show its efficiency
and ease of use by applying it to a fundamental geomet-
ric problem: computing the convex hull of a point set
in two dimensions.

In general our framework supports parallelization of
divide and conquer algorithms working on on linear con-
tainers of objects (e.g. an array of points). We use the
STL iterator interface ([1]), i.e., the input is defined by
two iterators left and right pointing to the leftmost and
rightmost element of the container. The framework is
generic. It can be applied to any D&C-algorithm that is
implemented by a C++ class template that implements
a certain job interface defined in section 3.

The paper is structured as follows. In Section 2
we discuss some aspects of the parallelization of D&C-
algorithms, Section 3 defines the job-interface which has
to be used for the algorithms, such that the solvers pre-
sented in Section 5 can be applied. Section 6 presents
some experimental results, in particular the speedup
achieved for different numbers of cpu cores and differ-
ent problem instances. Finally, Section 7 gives some
conclusions and reports on current and ongoing work.

∗This work was supported by DFG-Grant Na 303/2-1
†Department of Computer Science, University of Trier, Ger-

many. {naeher, schmittd}@uni-trier.de

2 Divide and Conquer Algorithms

Divide and conquer algorithms solve problems by di-
viding them into subproblems, solving each subprob-
lem recursively and merging the corresponding results
to a complete solution. All subproblems have exactly
the same structure as the original problem and can be
solved independently from each other, and so can eas-
ily be distributed over a number of parallel processes
or threads. This is probably the most straightforward
parallelization strategy. However, in general it can not
be guaranteed that always enough subproblems exist,
which leads to non-optimal speedups. This is in partic-
ular true for the first divide step and the final merging
step but is also a problem in cases where the recur-
sion tree is unbalanced such that the number of open
sub-problems is smaller than the number of available
threads.

Therefore, it is important that the divide and merge
steps are solved in parallel when free threads are avail-
able, i.e. whenever the current number of sub-problems
is smaller than number of available threads. Our frame-
work basically implements a management system that
assigns jobs to threads in such a way that all cpu cores
are busy.

3 Jobs

In the proposed framework a job represents a (sub-
)problem to be solved by a D&C-algorithm. The first
(or root) job represents the entire problem instance.
Jobs for smaller sub-problems are created in the divide
steps. As soon as the size of a job is smaller than a
given constant it is called a leaf job which is solved di-
rectly without further recursion. As soon as all children
of a job have been solved the merge step of the D&C-
algorithm is applied and computes the result of the en-
tire problem by combining the results of its children.

In this way jobs represent sub-problems as well as
the corresponding solutions. Note that the result of
a job is either contained in the corresponding interval
of the input container or has to be represented in a
separate data structure, e.g. a separate list of objects.
Quicksort is an example for the first case and Quickhull
(as presented in Section 4) for the second case.

The algorithm is implemented by member functions

20th Canadian Conference on Computational Geometry, 2008

of the job class which must have the following interface.

class job

{ job(iterator left, iterator right);

bool is_leaf();

void handle_leaf();

list<job> divide();

void merge(list<job>& L);

};

In the constructor a job is created by storing two iter-
ators (e.g. pointers into an array) that define the first
and last element of the problem. If the is leaf pred-
icate returns true recursion stops and the problem is
solved directly by calling the handle leaf operation. The
divide operation breaks a job into smaller jobs and re-
turns them in a list, and the merge operation combines
the solutions of sub-jobs (given as a list of jobs) to a
complete solution. There are no further requirements
to a job class.

4 Quickhull

We show how to define a job class qh job implementing
the well-known Quickhull algorithm ([2]) for computing
the convex hull of a point set. For simplicity we consider
a version of the algorithm that only computes the upper
hull of the given point set and we assume that the input
is give by a pair of iterators left and right into an
array of points such that left contains the minimal
and right the maximal point in the lexicographical xy-
ordering. The result of a qh job instance is the sequence
of points of the upper hull lying between left and right.
In this scenario any job of size two (only the leftmost
and rightmost point) represents a leaf problem and has
the empty list as result. Consequently, the handle leaf
operation is trivial (keeping an empty result list).

The divide operation is using two auxiliary func-
tions: farthest point(l,r) computes a point between
l and r with maximal distance to the line segment (l, r)
and partition triangle implements the partition step
of quickhull as shown in Figure 1 and returns the gen-
erated sub-problems as a list of jobs. We tried different
variants of this partition function. In particular, one us-
ing only one thread and one using all available threads.
The latter version is similar to the parallel partition
strategy proposed in [4] for a multi-core implementation
of Quicksort. In the experiments in Section 6) we will
see that this can have a dramatic effect on the speedup
achieved.

Finally, the merge operation takes a list of (two) jobs
as input, concatenates their result lists, and inserts the
right-most point of the first problem in between. The
complete implementation is given by the following piece
of C++ code.

template<class iterator> class qh_job {

left rightpivot

left rightlh rh

A BC

A C C B

A B

C

partition triangle

Figure 1: The partition step of Quickhull.

iterator left;

iterator right;

list<point> result;

public:

qh_job(iterator l, iterator r): left(l),right(r) {}

int size() { return right - left + 1; }

bool is_leaf() { return size() == 2; }

void handle_leaf() {}

list<qh_job> divide()

{ iterator pivot = farthest_point(left,right);

iterator lh,rh;

partition_triangle(pivot,left,right,lh,rh);

list<qh_job> L;

L.push_back(qh_job(left,lh));

L.push_back(qh_job(rh,right));

return L;

}

void merge(list<qh_job>& children)

{ qh_job j1 = children.front();

qh_job j2 = children.back();

result.conc(j1.result);

result.push_back(j1.right);

result.conc(j2.result;

}

};

CCCG 2008, Montréal, Québec, August 13–15, 2008

5 Solvers

Our framework provides different solvers which can be
used to compute the result of a job. As a very basic
and simple example we give the code for a generic serial
recursive solver. It can simply be implemented by a
C++ function template.

template <class job>

void solve_recursive(job& j)

{ if (j.is_leaf()) j.handle_leaf();

else { list<job> Jobs = j.divide();

job x;

forall(x,Jobs) solve_recursive(x);

j.merge(Jobs);

}

};

Note that solve recursive is a generic dc-solver. It
accepts any job type job that implements the dc job

interface. We can now use it easily to implement a serial
quickhull function taking an array of points as input.

list<point> QH_SERIAL(array<point>& A)

{ int n = A.size();

qh_job<point*> j(A[0],A[n-1]);

solve_recursive(j);

list<point> hull = j.result;

hull.push_front(A[0]);

hull.push_back(A[n-1]);

return hull;

};

It is an easy exercise to write a non-recursive ver-
sion of this serial solver: simply push all jobs created
by divide operations on a stack and use an inner loop
processing all jobs on the stack.

5.1 Parallel Solvers

A parallel solver is much more complex. It maintains
unsolved jobs, builds the recursion tree of jobs while the
algorithm proceeds and checks for the mergeability of
sub-jobs. It also has to administrate all parallel working
threads.

We implement parallel solvers by C++ class tem-
plates. The constructor takes as argument the number
of threads to be used for solving the problem. There are
more parameters that can be changed by corresponding
methods of the class. For instance, a limit d for the
minimal problem size for any thread. If a the size of job
gets smaller than d it will not be divided into new jobs
but solved by the same thread using a serial algorithm.
Using this limit the overhead of starting a huge num-
ber of threads on very small problem instances can be
avoided.

template <class Job>

class dc_parallel_solver {

public:

dc_parallel_solver(int thread_num);

void set_limit(int d);

void run(Job& j)

};

We now can use the parallel solver template to imple-
ment a parallel version of the quickhull function.

list<point> QH_PARALLEL(array<point>& A, int thr_n)

{ int n = A.size();

dc_parallel_solver<job<point*> > solver(thr_n);

job<point*> j(A[0],A[n-1]);

solver.run(j);

list<point> hull = j.result;

hull.push_front(A[0]);

hull.push_back(A[n-1]);

return hull;

};

6 Experiments

All experiments were executed on a Linux PC with an
Intel quad-core processor running at a speed of 2.6 GHz.
As implementation platform we used a thread-safe ver-
sion of LEDA ([3]). In particular, we used the exact ge-
ometric primitives of the rational geometry kernel and
some of the basic container types such as arrays and
lists. All programs were compiled with gcc 4.1.

 1

 1.2

 1.4

 1.6

 1.8

 2

 1e+06 2e+06 4e+06 8e+06

S
pe

ed
up

 Q
H

Input Size

2 Threads, in square
2 Threads, near circle

2 Threads, on circle

Figure 2: Quickhull: Speedup with 2 cores.

For the experiments we used three different problem
generators: random points lying in a square, random
points near a circle, and points lying exactly on a circle.
Figures 2 and 3 show that we our framework achieved
a good speedup behavior for points on or near a circle,
which is the difficult case for Quickhull because only a
few or none of the points can be eliminated in the par-
titioning step. Note that the 1.0 baseline indicates the

20th Canadian Conference on Computational Geometry, 2008

performance of a serial version of the algorithm (using
only one thread). It turned out that n/100 was good
choice for the limit mentioned in section 5.1.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1e+06 2e+06 4e+06 8e+06

S
pe

ed
up

 Q
H

Input Size

4 Threads in square
4 Threads, near circle

4 Threads, on circle

Figure 3: Quickhull: Speedup with 4 cores.

For random points in a square Quickhull eliminates
almost all of the input points in the root job of the al-
gorithms (with high probability), i.e. almost the entire
work is done here. In this case the achieved speedup is
not optimal. However, Figure 4 shows that without par-
allelization of the partitioning step we have no speedup
at all. We have some ideas to improve the parallel par-
titioning and hope to improve the results for this kind
of problem instances.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1e+06 2e+06 4e+06 8e+06

S
pe

ed
up

 Q
H

/P
ar

tit
io

n
C

om
pa

ris
on

Input Size

4 Threads, in square, parallel partitioning
2 Threads, in square, parallel partitioning

4 Threads, in square, sequential partitioning
2 Threads, in square, sequential partitioning

Figure 4: Quickhull: The effect of parallel partitioning.

We also want to mention here that we ran experi-
ments with different D&C algorithms for convex hulls.
In particular, a recursive version of the gift wrapping
method where the merge step does most of the work by
constructing two tangents. Figure 5 shows the speedup
behavior of this algorithm for the same set of input in-
stances.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1e+06 2e+06 4e+06 8e+06

S
pe

ed
up

 T
S

Input Size

4 Threads in square
4 Threads, near circle

4 Threads, on circle

Figure 5: Tangent Search: Speedup with 4 cores.

7 Conclusions

We have presented a framework for the implementation
and parallelization of divide and conquer algorithms.
The framework is generic (by using C++ templates)
and can be used very easily. The experiments show
that a considerable speedup can be achieved by using
two or four threads on a quad core machine. We have
some ideas to improve the parallel partitioning of the
quickhull algorithm and hope to be able to improve the
efficiency in cases where most of the work is done in the
root job. In this short version of the paper we could
not present all experiemental results. In particular, our
framework shows a very good performance also on ba-
sic D&C algorithms such as Quicksort (see the online
version of the paper for more details). We also work
on the parallelization of incremental algorithms for geo-
metric problems and higher dimensional problems. One
of the major problems is the need of more complicated
thread-safe dynamic data structures such as graphs or
polyhedra.

References

[1] M. H. Austern Generic programming and the STL,
Addison-Wesley, 2001.

[2] A. Bykat Convex hull of a finite set of points in

two dimensions. IPL, 7:296-298, 1978.

[3] K. Mehlhorn and S. Näher. The LEDA Plat-

form for Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

[4] Philippas Tsigas and Yi Zhang A Simple, Fast Par-

allel Implementation of Quicksort and its Perfor-

mance Evaluation on SUN Enterprise 10000.

