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Abstract

We present a framework for multi-core implementations
of divide and conquer algorithms and show its efficiency
and ease of use by applying it to the fundamental geo-
metric problem of computing the convex hull of a point
set. We concentrate on the Quickhull algorithm intro-
duced in [2]. In general the framework can easily be
used for any D&C-algorithm. It is only required that
the algorithm is implemented by a C++ class imple-
menting the job-interface introduced in section 3 of this
paper.

1 Introduction

Performance gain in computing is no longer achieved
by increasing cpu clock rates but by multiple cpu cores
working on shared memory and a common cache. In
order to benefit from this development software has to
exploit parallelism by multi-threaded programming. In
this paper we present a framework for the parallelization
of divide and conquer algorithms and show its efficiency
and ease of use by applying it to a fundamental geomet-
ric problem: computing the convex hull of a point set
in two dimensions.

In general our framework supports parallelization of
divide and conquer algorithms working on on linear con-
tainers of objects (e.g. an array of points). We use the
STL iterator interface ([1]), i.e., the input is defined by
two iterators left and right pointing to the leftmost and
rightmost element of the container. The framework is
generic. It can be applied to any D&C-algorithm that is
implemented by a C++ class template that implements
a certain job interface defined in section 3.

The paper is structured as follows. In Section 2
we discuss some aspects of the parallelization of D&C-
algorithms, Section 3 defines the job-interface which has
to be used for the algorithms, such that the solvers pre-
sented in Section 5 can be applied. Section 6 presents
some experimental results, in particular the speedup
achieved for different numbers of cpu cores and differ-
ent problem instances. Finally, Section 7 gives some
conclusions and reports on current and ongoing work.
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2 Divide and Conquer Algorithms

Divide and conquer algorithms solve problems by di-
viding them into subproblems, solving each subprob-
lem recursively and merging the corresponding results
to a complete solution. All subproblems have exactly
the same structure as the original problem and can be
solved independently from each other, and so can eas-
ily be distributed over a number of parallel processes
or threads. This is probably the most straightforward
parallelization strategy. However, in general it can not
be guaranteed that always enough subproblems exist,
which leads to non-optimal speedups. This is in partic-
ular true for the first divide step and the final merging
step but is also a problem in cases where the recur-
sion tree is unbalanced such that the number of open
sub-problems is smaller than the number of available
threads.

Therefore, it is important that the divide and merge
steps are solved in parallel when free threads are avail-
able, i.e. whenever the current number of sub-problems
is smaller than number of available threads. Our frame-
work basically implements a management system that
assigns jobs to threads in such a way that all cpu cores
are busy.

3 Jobs

In the proposed framework a job represents a (sub-
)problem to be solved by a D&C-algorithm. The first
(or root) job represents the entire problem instance.
Jobs for smaller sub-problems are created in the divide
steps. As soon as the size of a job is smaller than a
given constant it is called a leaf job which is solved di-
rectly without further recursion. As soon as all children
of a job have been solved the merge step of the D&C-
algorithm is applied and computes the result of the en-
tire problem by combining the results of its children.

In this way jobs represent sub-problems as well as
the corresponding solutions. Note that the result of
a job is either contained in the corresponding interval
of the input container or has to be represented in a
separate data structure, e.g. a separate list of objects.
Quicksort is an example for the first case and Quickhull
(as presented in Section 4.3) for the second case.

The algorithm is implemented by member functions
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of the job class which must have the following interface.

class job

{ job(iterator left, iterator right);

bool is_leaf();

void handle_leaf();

list<job> divide();

void merge(list<job>& L);

};

In the constructor a job is normaly created by storing
two iterators (e.g. pointers into an array) that define
the first and last element of the problem. If the is leaf

predicate returns true recursion stops and the problem
is solved directly by calling the handle leaf operation.
The divide operation breaks a job into smaller jobs and
returns them in a list, and the merge operation combines
the solutions of sub-jobs (given as a list of jobs) to a
complete solution. There are no further requirements
to a job class.

4 Algorithms

In this section we present job definitions for some well
known divide and conquer algorithms. We use Quick-
sort as an introductive example and then discuss two
convex hull algorithms, gift wrapping and Quickhull.

4.1 Quicksort

Quicksort takes as input an array given by the random
access iterators left and right. Functions merge and
handle leaf are trivial. The divide operation calls a
function partition(l,r) that performs the partition
step with a randomly selected pivot element. It returns
the position of the pivot element as an iterator m. Fi-
nally, it creates two jobs for the two sub-problems.

template<class iterator> class qs_job {

iterator left, right;

public:

qs_job(iterator l, iterator r): left(l),right(r){}

int size() { return right - left + 1; }

bool is_leaf() { return size() <= 1; }

void handle_leaf() {}

void merge(list<qh_job>& children){}

list<qh_job> divide()

{ iterator m = partition(left,right);

list<qh_job> L;

L.push_back(qs_job(left,m));

L.push_back(qs_job(m + 1,right));

return L;

}

};

4.2 Gift Wrapping

The well-known Gift Wrapping algorithm constructs the
convex hull by folding a halfplane around the set of in-
put points such that all points always lie on the same
side of the halfplane. In the recursive version of the
algorithms two disjoint convex hulls are combined by
computing tangents to both hulls. The divide and con-
quer algorithm is designed as follows:

Partition the input points at some pivot position ac-
cording to the lexicographical ordering of the cartesian
coordinates in two sets L and R, such that the con-
vex hulls of L and R are disjoint. Then compute the
convex hull L and R and the extreme points min and
max of both hulls recursively. Finally compute the
upper and lower tangents starting with line segment
(max(L), min(R)).

We assume that the input is unsorted and use the
Quicksort partitioning step for creating the two sub-
problems. This gives an expected running time of
O(n log n). Note that we sort the input and compute
the convex hull at the same time by exploiting the fact
that Quicksort has a trivial merge and Gift Wrapping a
trivial divide operation.

The corresponding gw job class is derived from
qs job. It inherits the input iterators and the opera-
tions size and divide. The convex hull is stored in
a doubly-linked list result. The class contains in ad-
dition iterators min and max pointing to the extreme
points of the hull. Function handle leaf() treats the
trivial case of input size one.

The merge operation is illustrated in Figure 1. The
auxiliary function compute tangents() does the main
work by computing the two tangents as described above.

template<class iterator> class gw_job : qs_job

{

list<point> result;

list_iterator min, max;

public:

qs_job(iterator l, iterator r): qs_job(l,r){}

void handle_leaf()

{ if (size() == 1) {

result.push_back(*left);

max = min = result.begin();}

}

void merge(list<qh_job>& children)

{ qh_job jleft = children.front();

qh_job jright = children.back();

result = compute_tangents(jleft.result,

jleft.max,jright.min,jright.result);

min = jleft.min;

max = jright.max;

}
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Figure 1: The merge operation of Gift Wrapping.

};

4.3 Quickhull

We show how to define a job class qh job implementing
the well-known Quickhull algorithm ([2]) for computing
the convex hull of a point set. For simplicity we consider
a version of the algorithm that only computes the upper
hull of the given point set and we assume that the input
is give by a pair of iterators left and right into an
array of points such that left contains the minimal
and right the maximal point in the lexicographical xy-
ordering. The result of a qh job instance is the sequence
of points of the upper hull lying between left and right.
In this scenario any job of size two (only the leftmost
and rightmost point) represents a leaf problem and has
the empty list as result. Consequently, the handle leaf
operation is trivial (keeping an empty result list).

The divide operation is using two auxiliary func-
tions: farthest point(l,r) computes a point between

left rightpivot

left rightlh rh

A BC

A C C B

A B

C

partition triangle

Figure 2: The partition step of Quickhull.

l and r with maximal distance to the line segment (l, r)
and partition triangle implements the partition step
of quickhull as shown in Figure 2 and returns the gen-
erated sub-problems as a list of jobs. We tried different
variants of this partition function. In particular, one us-
ing only one thread and one using all available threads.
The latter version is similar to the parallel partition
strategy proposed in [8] for a multi-core implementation
of Quicksort. In the experiments in Section 6) we will
see that this can have a dramatic effect on the speedup
achieved.

Finally, the merge operation takes a list of (two) jobs
as input, concatenates their result lists, and inserts the
right-most point of the first problem in between. The
complete implementation is given by the following piece
of C++ code.

template<class iterator> class qh_job {

iterator left;

iterator right;

list<point> result;

public:

qh_job(iterator l, iterator r): left(l),right(r) {}

int size() { return right - left + 1; }

bool is_leaf() { return size() == 2; }

void handle_leaf() {}

list<qh_job> divide()

{ iterator pivot = farthest_point(left,right);

iterator lh,rh;

partition_triangle(pivot,left,right,lh,rh);
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list<qh_job> L;

L.push_back(qh_job(left,lh));

L.push_back(qh_job(rh,right));

return L;

}

void merge(list<qh_job>& children)

{ qh_job j1 = children.front();

qh_job j2 = children.back();

result.conc(j1.result);

result.push_back(*j1.right);

result.conc(j2.result);

}

};

5 Solvers

Our framework provides different solvers which can be
used to compute the result of a job. As a very basic
and simple example we give the code for a generic serial
recursive solver. It can simply be implemented by a
C++ function template.

template <class job>

void solve_recursive(job& j)

{ if (j.is_leaf()) j.handle_leaf();

else { list<job> Jobs = j.divide();

job x;

forall(x,Jobs) solve_recursive(x);

j.merge(Jobs);

}

};

Note that solve recursive is a generic dc-solver. It
accepts any job type job that implements the dc job

interface. We can now use it easily to implement a serial
quickhull function taking an array of points as input.

list<point> QH_SERIAL(array<point>& A)

{ int n = A.size();

qh_job<point*> j(A[0],A[n-1]);

solve_recursive(j);

list<point> hull = j.result;

hull.push_front(A[0]);

hull.push_back(A[n-1]);

return hull;

};

It is an easy exercise to write a non-recursive ver-
sion of this serial solver: simply push all jobs created
by divide operations on a stack and use an inner loop
processing all jobs on the stack.

5.1 Parallel Solvers

Parallel solvers are much more complex. They main-
tain open jobs, build the recursion tree while the algo-
rithm proceeds and check for the mergeability of sub-
jobs. They also have to administrate all threads working

in parallel. In our framework all threads use a common
job queue which has to be synchronized using a mutex
variable.

There are different solver versions according to dif-
ferent requirements. The simplest solver handles prob-
lems with a trivial merge step in which case it is not
necessary to store the recursion tree explicitely. In our
framework solvers distinguishes two types of threads.
Primary threads work in parallel in different parts of
the recursion tree, and secondary threads parallelize ba-
sic operations like partitioning and merging. A solver
always tries to employ as much primary threads as pos-
sible.

There are more parameters that can be changed by
corresponding methods of the class. For instance, a
limit d for the minimal problem size for any thread. If a
the size of job gets smaller than d it will not be divided
into new jobs but solved by the same thread using a se-
rial algorithm. Using this limit the overhead of starting
a huge number of threads on very small problem in-
stances can be avoided. We implement parallel solvers
by C++ class templates. In the example one sees the
interface of a solver class. The constructor takes as ar-
gument the number of threads to be used for solving the
problem. The computation starts with calling the run

function with a list of root jobs.

template <class Job>

class dc_parallel_solver {

public:

dc_parallel_solver(int thread_num);

void set_limit(int d);

void run(list<Job*> j)

};

We now can use the parallel solver template to imple-
ment a parallel version of the quickhull function.

list<point> QH_PARALLEL(array<point>& A, int thr_n)

{ int n = A.size();

dc_parallel_solver<job<point*> > solver(thr_n);

job<point*> j(A[0],A[n-1]);

solver.run(j);

list<point> hull = j.result;

hull.push_front(A[0]);

hull.push_back(A[n-1]);

return hull;

};

6 Experiments

All experiments were executed on a Linux PC with an
Intel quad-core processor running at a speed of 2.6 GHz.
As implementation platform we used a thread-safe ver-
sion of LEDA ([6]). In particular, we used the exact ge-
ometric primitives of the rational geometry kernel and
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some of the basic container types such as arrays and
lists. All programs were compiled with gcc 4.1.

In the Quicksort experiments, we sort arrays of inte-
gers of various size. Our Quicksort implementation uses
a parallel partition function.
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Figure 3: Quickhull: Speedup of Quicksort.

In figure 3 we see the speedup growing near optimal
values when the size of the input gets large. To achieve
a benefit from parallization we need sufficient problem
sizes.
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Figure 4: Quickhull: Comparison Quicksort with MC-
STL.

Figure 4 compares our Quicksort implementation
with two implementations form the MCSTL library
([7]). The MCSTL implementation with the better
speedup is based on Mergesort the other on Quicksort.
All implementations have a very good speedup progress.
However the best speedup not always corresponds to the
best absolute running time. Table 1 shows the running
times of an input of 108 integers and different thread
numbers. Our implementation is marginal faster.

1 2 3 4
QS 10.31 5.32 3.74 2.96
MCSTL-MS 10.47 5.45 3.94 3.07
MCSTL-QS 10.47 5.92 4.02 3.19

Table 1: The Table shows running times in seconds of
three Sorting Algorithms. On the x-axis is the number
of threads. The input was 108 integers.
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Figure 5: Quickhull: Speedup with 2 cores.

For the convex hull experiments we used three dif-
ferent problem generators: random points lying in a
square, random points near a circle, and points lying
exactly on a circle. Figures 5 and 6 show that we our
framework achieved a good speedup behavior for points
on or near a circle, which is the difficult case for Quick-
hull because only a few or none of the points can be
eliminated in the partitioning step. Note that the 1.0
baseline indicates the performance of a serial version of
the algorithm (using only one thread). It turned out
that n/100 was good choice for the limit mentioned in
section 5.1.

For random points in a square Quickhull eliminates
almost all of the input points in the root job of the al-
gorithms (with high probability), i.e. almost the entire
work is done here. In this case the achieved speedup is
not optimal. However, Figure 7 shows that without par-
allelization of the partitioning step we have no speedup
at all. We have some ideas to improve the parallel par-
titioning and hope to improve the results for this kind
of problem instances.

We also want to mention here that we ran experi-
ments with different D&C algorithms for convex hulls.
In particular, a recursive version of the gift wrapping
method where the merge step does most of the work by
constructing two tangents. Figure 8 shows the speedup
behavior of this algorithm for the same set of input in-
stances.
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Figure 6: Quickhull: Speedup with 4 cores.
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Figure 7: Quickhull: The effect of parallel partitioning.

Furthermore we used two additional serial solvers for
the gift wrapping job. One implements the random in-
cremental construction algorithm (RIC) of M. Kallay
[4], the other Grahams Scan (GS) [5]. Both show a very
good spedup for points on a circle and worse speedup
for points in a square compared to the serial solver of
Gift Wrapping, see 9.

However the absolute running times show in all cases
a better performance of the GS solution. The serial ran-
dom incremental solver is even better for small convex
hulls (points in square) and really worse for large re-
sults, which is a characteristic of this algorithm. Some
experimental results are given in the tables 2 and 3.

A serial algorithm can improve the performance of
a D&C implementation by solving subproblems more
efficient. The main point of D&C stays the creation
of a sufficient number of subproblems. Note that the
Graham Scan Algorithm of our example is inherently
sequential and therefore cannot be parallelized easily.
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Figure 8: Gift Wrapping: Speedup with 4 cores.
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Figure 9: Gift Wrapping: Speedup with 4 cores and
different serial solvers.

1 ∗ 106 2 ∗ 106 4 ∗ 106 8 ∗ 106

GW 0.69 1.54 3.3 7.26
GW & RIC 0.4 0.78 1.72 3.26
GW & GS 0.49 1.14 2.67 6

Table 2: Gift Wrapping/points in square: The Table
shows running times in seconds of the Gift Wrapping
Algorithm with three different serial solvers. On the
x-axis is the size of input.

7 Conclusions

We have presented a framework for the implementation
and parallelization of divide and conquer algorithms.
The framework is generic (by using C++ templates)
and can be used very easily. The experiments show
that a considerable speedup can be achieved by using
two or four threads on a quad core machine. We have
some ideas to improve the parallel partitioning of the



CCCG 2008, Montréal, Québec, August 13–15, 2008

1 ∗ 106 2 ∗ 106 4 ∗ 106 8 ∗ 106

GW 1.26 2.78 5.85 12.66
GW & RIC 1 2.31 4.98 10.79
GW & GS 2.15 6.19 17.49 46.42

Table 3: Gift Wrapping/points on circle:The Table
shows running times in seconds of the Gift Wrapping
Algorithm with three different serial solvers. On the
x-axis is the size of input.

quickhull algorithm and hope to be able to improve the
efficiency in cases where most of the work is done in the
root job. In this paper we presented a sample of our
experimental results with different D&C Algorithms.
We also work on the parallelization of incremental algo-
rithms for geometric problems and higher dimensional
problems. One of the major problems is the need of
more complicated thread-safe dynamic data structures
such as graphs or polyhedra.
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