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1 Introduction

Searching in a geometric space is an active area of re-
search, predating computer technology. The applica-
tions are varied ranging from robotics, to search-and-
rescue operations in the high seas [24, 23] as well as
in land, such as in an avalanche [5] or an office space
[12, 7, 13], to scheduling of heuristic algorithms for
solvers searching an abstract solution space for a specific
solution [16, 17, 22, 2, 19]. Within academia, the field
has seen two marked boosts in activity. The first was
motivated by the loss of weaponry off the coast of Spain
in 1966 in what is known as the Palomares incident and
of the USS Thresher and Scorpion submarines in 1963
and 1966 respectively [24, 26]. A second renewed thrust
took place in the late 1980s when the applications for
autonomous robots became apparent.

Geometric searching has proved a fertile ground
within computational geometry for the design and anal-
ysis of search and recognition strategies under various
initial conditions [14, 12, 6, 7, 8, 18, 20].

The basic search scenarios consist of exploring a one
dimensional object, such as a path or office corridor,
usually modeled as the real line, and of exploring a two
dimensional scene, such as a room or a factory floor,
usually modelled as a polygonal scene. However, in spite
of numerous advances in the theoretical understanding
of both of these scenarios, so far such solutions have
generally had a limited impact in practice.

Over the years various efforts have been made to ad-
dress this situation, both in terms of isolated research
papers attempting to narrow the gap, as well as in
organized efforts such as the Algorithmic Foundations
of Robotics conference and the Dagstuhl seminars on
on-line robotics which bring together theoreticians and
practitioners. From these it is apparent that the cost
model and hence the solutions obtained from theoretical
analysis do not fully reflect real life constraints. Several
efforts have been made to resolve this, such as including
the turn cost, the scanning cost, and error in navigation
and reckoning [9, 10, 15, 20, 18].

In this paper we address one more shortcoming of
the standard model. Consider for example a vacuuming
robot—such as Roomba(TM). Such a robot explores the
environment using sophisticated motion planning algo-
rithms with the goal of attaining complete coverage of
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the floor surface within a reasonable amount of time.
It is not hard to devise worst case floor plans (such as
complex mazes) which would not be covered very effi-
ciently. In practice this is not a concern since (i) most
rooms are relatively simple and (ii) if the robot ever en-
counters such a complex scene a drop in performance is
only to be expected and users would not mind a severe
degradation in performance. This naturally leads to the
concept of adaptive algorithms, in which on simpler in-
puts the robot must perform more efficiently than on
more complex ones.

In this paper we consider adaptive analysis of two
basic geometric primitives: searching on the real line
and looking around the corner.

Searching on the real line consists of finding a tar-
get t on the real line located at an unknown distance
d (in either direction) from a search robot. The robot
detects t upon contact. The optimal strategy visits the
rays under a doubling strategy with competitive ratio
of 9 [4, 11, 3, 21]. We refer the reader to the survey of
Alpern and Gal [1] for a thorough discussion. However
upon being presented by the optimal doubling strategy
practitioners routinely report that they find the answer
non-intuitive and generally “not optimal”. This holds
for the optimal strategy for either the average or the
worst case. There are several non-mutually exclusive
explanations for this disparity. In particular we incorpo-
rate the observation that in some settings, exploration
is a valuable task in which case the goal is to simulta-
neously minimize the time to the target, and maximize
the amount of information gained during the search. For
this case we obtain an optimal strategy that is, subjec-
tively, more pleasing to practitioners.

For the second case study we consider searching
around a corner. Icking et al. [14] provided an algo-
rithm with competitive ratio c ≈ 1.21218 and proved
that this is the best competitive ratio possible. We ex-
tend this result by applying adaptive analysis to this
problem.

2 Searching on the Real Line

Without loss of generality, we assume the robot searches
starting from the origin x1 units to left, then it returns
to the origin and moves past it x2 units to the right. In
general in the ith phase, it goes xi units from origin to
left or right (depending on the parity of i) and returns
to the origin. The search ends when the robot finds the
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target. In the doubling strategy we have xi = 2i−1. In
the standard cost model, we minimize the ratio of the
distance travelled by the robot to the straight distance
from the target to the origin, which is termed the com-
petitive ratio. As stated before, the doubling method
has competitive ratio 9, which is optimal.

In order to reflect the “waste” of robot when travers-
ing a region that has already been explored, we pro-
pose a dual cost model. It costs one unit whenever the
robot traverses one unit of distance of unknown ter-
ritory, while it costs c units (c ≥ 1) when the robot
traverses a region that has already been explored.

In order to find the worst case for doubling method
under the new cost model, assume that the target is
located at distance 2k + ε from the origin, for some
integer k. Therefore robot will find the target at phase
k + 3. For 3 ≤ i ≤ k + 2, let C(i) be the cost robot
incurs at phase i. At phase i, the robot goes 2i−1 units
away from the origin and then returns to the origin.
Of the first 2i−1 units, 2i−3 units are already explored
and 2i−1−2i−3 = 3×2i−3 units are newly explored. All
2i−1 units on the robot’s return to the origin are already
explored. Therefore we have C(i) = 2i−3(5c + 3). Thus
the total cost of the first k + 2 phases is (1 + c) + (2 +

2c)+
∑k+2

i=3 2i−3(5c + 3) = (5× 2k − 2)c+3× 2k. In the
last phase, the robot finds the target at distance 2k + ε,
incurring cost 2kc + ε. Thus the competitive ratio of

doubling is (6×2k−2)c+3×2k+ε
2k+ε which becomes arbitrarily

close to 6c + 3 as k grows. Note that for c = 1 we get
the standard competitive ratio of 9.

Observe that the doubling might no longer be the
optimal strategy under the new model. As usual we
consider the family of geometric search strategies Ar:
we have xi = ri−1 for an arbitrary real number r > 1
(the doubling strategy corresponds to A2). Using argu-
ments similar to the analysis of the doubling method,
the cost of robot at phase 3 ≤ i ≤ k + 2 is C(i) =
ri−3((r2 + 1)c + (r2 − 1)) and the total cost of Ar

is (r + 1 + (r2 + 1)( rk−1
r−1 ) + rk)c + (r2 − 1)( rk−1

r−1 ) +
ε. Thus the competitive ratio of Ar for this case is

CR(Ar) =
(r+1+(r2+1)( r

k
−1

r−1
)+rk)c+(r+1)(rk−1)+ε

rk+ε
, which

becomes arbitrarily close to ( r2+r
r−1 )c + r + 1 as k grows.

Through symbolic manipulation, we find out that the

competitive ratio is minimized for r = 1 +
√

2c+2c2

c+1 . As

c goes to ∞, this optimal value of r goes to 1 +
√

2 =
2.414213 . . . with a search cost of (3+2/

√
2)c+2+

√
2 ≈

5.83c+ 3.41. This improves over the 6c + 3 cost of dou-
bling for large c.

Furthermore, this is optimal, as it can be shown us-
ing the Gal-Schuierer functional theorem [11, 25] as fol-
lows. For any given strategy, let X = x0, x1, x2, . . .
denote the (infinite) sorted sequence of turn points
incurred by the strategy. Then using ideas similar
to [22] we can lower bound the competitive ratio by

CR ≥ cost(ALG)/cost(OPT ), where cost(ALG) =
(x0+cx0)+(x1+cx1)+(x2−x0+cx0+cx2)+. . .+(xk+1−
xk−1 + cxk−1 + cxk+1) + cxk, and cost(OPT ) = xk.
Therefore, we have that

CR(X, k) ≥ (c + 1)
∑k+1

i=0 xi + (c − 1)
∑k−1

i=0 xi + cxk

xk
(1)

Let X+i = (xi, xi+1, . . .) denote the suffix of a se-
quence X = (x0, x1, . . .) starting at xi.

Theorem 1 ([25]) Let X = (x0, x1, . . .) be a se-
quence of positive numbers, r an integer, and a =
lim supn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0,
is a sequence of functionals which satisfy
(1) Fk(X) only depends on x0, x1, . . . , xk+r,
(2) Fk(X) is continuous, ∀xi > 0, with 0 ≤ i ≤ k + r,
(3) Fk(αX) = Fk(X), ∀α > 0,
(4) Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and
(5) Fk+i(X) ≥ Fk(X+i), ∀i ≥ 1,
then sup0≤k<∞ Fk(X) ≥ sup0≤k<∞ Fk(Ar).

It is not hard to verify that the hypothesis of the theo-
rem holds for the modified cost model, and hence it suf-
fices to consider xi of the form ri−1 in the expression for
CR(X, k) above. Note that the left-hand side of inequal-
ity 1 above is precisely the expression we derived when
upper-bounding the competitive ratio. Therefore, sub-
stituting r with 1+

√
2 yields a lower bound on CR(X, k)

which is identical to the upper bound, which in turn im-
plies that the geometric strategy with r = 1 +

√
2 is in

fact optimal.
We can extend our dual cost model to cases in which

c < 1, i.e., revisiting is less expensive than discovering.
As suggested by an anonymous reviewer, the case c = 0
can also be used to model two sequential communicat-
ing searchers. If c < 0, the robot can reduce its cost
by revisiting the discovered territories forever and no
optimal strategy exists. For 0 < c < 1, we can use an
analysis analogous to the case c ≥ 1 to show that Ar

with r = 1 +
√

2c+2c2

c+1 is optimal. For c = 0, the optimal
strategy is Ar with r = 1 + ε for a very small constant
ε and this leads to the competitive ratio 2 + ε.

3 Looking Around a Corner

In this particular case we consider the setting in which
the robot is exploring a man made setting in which there
is a preferential occurrence for orthogonal and near or-
thogonal angles. We wish to explore the change in the
nature of the solution when this assumption is made.

We follow the same approach as [14] and formulate
the problem using a differential equation. Therefore we
use similar terminology and notation and just highlight
the differences between the methods; refer to [14] for
omitted details. First we formally define the problem.
Figure 1 shows a typical instance of the problem. The
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Figure 1: A typical instance of the corner problem.

corner is placed at the origin O and one of its halflines
coincides with the negative y axis. The other halfline of
the corner makes an angle 0 ≤ ϕ ≤ π with the positive
y axis. A mobile robot is located at point W = (0,−1)
and is equipped with an on-board vision system facing
O. When ϕ > 0, the robot cannot see the other halfline
(wall) of the corner and his goal is to discover that (in-
visible) halfline by minimum movement. The robot sees
the invisible line the first time it visits any point on the
prolongation M(ϕ) of the invisible line. Let a(ϕ) be the
distance between W and M(ϕ). We have

a(ϕ) =

{

sin ϕ if 0 ≤ ϕ ≤ π/2

1 if π/2 < ϕ ≤ π
(2)

If the robot knows ϕ then it can discover the invisible
wall by the optimal movement a(ϕ). However this is not
the case and the robot should come up with a strategy
S that works for all 0 ≤ ϕ ≤ π. Let AS(ϕ) be the length
of the path generated by S from W to the first point on
M(ϕ). Then the competitive function of S is defined as

fS(ϕ) = AS(ϕ)
a(ϕ) and the competitive factor of S is defined

as cS = supϕ∈(0,π] fS(ϕ).
In practical robot navigation most corners have angles

close to π/2 and usually we do not have angles close to
0 or π. As a first attempt for applying adaptive analysis
ideas we consider d(ϕ) = 1/

√
sin ϕ as difficulty measure.

Figure 2 shows the behaviour of d(ϕ) for 0 < ϕ < π.
We normalize the competitive function further by d(ϕ)
and the new competitive function is defined as gS(ϕ) =

fS(ϕ)
d(ϕ) =

{

AS(ϕ)√
sin ϕ

if 0 ≤ ϕ ≤ π/2

AS(ϕ)
√

sinϕ if π/2 < ϕ ≤ π

Icking et al. [14] describe the strategies by curves of
form S = (ϕ, s(ϕ)) in polar coordinates about O that
satisfy certain properties, e.g., s(0) = 1. They show
that the optimal competitive strategy is given by the
solution to

fR(ϕ) =
AR(ϕ)

sinϕ
= c,

for all ϕ ∈ [0, π/2] and for some constant c (the smallest
c if there are several solutions). For our cost model, the
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Figure 2: Plot of d(ϕ) = 1√
sin ϕ

for 0 < ϕ < π.
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Figure 3: Robot’s Optimal Path in the New Model.

corresponding equation becomes gR(ϕ) = AR(ϕ)√
sin ϕ

= c.

We have AR(ϕ) = c
√

sin ϕ ⇒ c cos ϕ
2
√

sin ϕ
= A

′

R(ϕ) =
√

r′2(ϕ) + r2(ϕ) ⇒ r′(ϕ) = −
√

c2 cos2 ϕ
4 sin ϕ − r2(ϕ). We

take the negative square root because in an optimal
strategy the robot should always come closer to the cor-
ner. By replacing r(ϕ) by cu(ϕ) we get the differential
equation

u′(ϕ) +

√

cos2 ϕ

4 sinϕ
− u2(ϕ) = 0, (3)

with initial condition u(0) = 1/c. Therefore, our prob-
lem reduces to:

Problem Find the minimum c > 1, such that the or-
dinary differential equation (3) has a solution on some
interval [0, σ] ⊆ [0, π/2], subject to the following con-
straints:

u(0) = 1/c u(ϕ) > 0 for ϕ ∈ [0, σ] u(σ) = 0

Since this type of differential equations generally do
not have a closed form we use numerical methods to
compute the solution c ≈ 1.08. The strategy with this
competitive factor is shown in Figure 3. We can prove
the optimality of this strategy using arguments analo-
gous to [14].
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Figure 4: Robot’s optimal path in the previous model.

The optimal strategy in the standard model is shown
in Figure 4. It has competitive factor ≈ 1.21 [14]. Ob-
serve that since less weight is given to small angles the
solution takes a shorter path to reach sightlines for an-
gles around π/4.
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[19] A. López-Ortiz, S. Angelopoulos, A. M. Hamel,
Optimal scheduling of contract algorithms for any-
time problems, in: AAAI, AAAI Press, 2006.
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