CCCG 2008, Montréal, Québec, August 13-15, 2008

Competitive Search for Longest Empty Intervals

Peter Damaschke™

Abstract

A problem arising in statistical data analysis and pat-
tern recognition is to find a longest interval free of data
points, given a set of data points in the unit interval. We
use the inverse length of the empty interval as a parame-
ter in the complexity bounds, since it is small in statisti-
cally relevant cases. For sorted point sets we get nearly
optimal strategies. While the asymptotic complexities
are trivial, achieving an optimal number of operations
appears to be difficult. Constant factors can be of prac-
tical interest for huge data sets. We derive determin-
istic and randomized upper and lower bounds. Match-
ing bounds and smooth trade-offs between the different
operations (reads, comparisons, subtractions) are open
questions. For unsorted point sets, the complexity is at
least linear. Therefore we also use statistical inference
to get approximate solutions in sublinear time.

1 Introduction

Given a set of n data points in a finite-size part of a
geometric space, we call a subset of this space (with
prescribed shape) free of data points an empty region.
Searching for largest empty regions is a natural prob-
lem in, e.g., data mining [10]. It has been considered
for rectangles in the plane [1, 2, 5, 8, 11] and boxes in
d dimensions. Usually, the complexity of algorithms is
expressed as a function of input size n. However, empty
regions are statistically relevant only if they are large
compared to the expected size if the data point set were
drawn from a uniform distribution. Then, large empty
regions may be found faster than in the worst case. Thus
it is sensible to measure complexity as a function of both
n and a parameter inverse to the size of the empty re-
gion. Here we study, as a first step, the 1-dimensional
case: empty intervals between n data points in the unit
interval. While the worst-case complexity is trivially
©O(n), the parameterized problem has a different nature.
Still, its optimal asymptotic complexity is easy to de-
termine by standard arguments, but the exact number
of operations appears to be a surprisingly difficult ques-
tion. Constant factors make a difference in practice,

*Department of Computer Science and Engineering, Chalmers
University, 41296 Géteborg, Sweden, email: ptr@cs.chalmers.se.
Supported by the Swedish Research Council (Vetenskapsradet),
grant no. 2007-6437, “Combinatorial inference algorithms — pa-
rameterization and clustering”.

when huge data sets are processed. Analyzing the num-
ber of operations (e.g., comparisons) without ignoring
constant factors is quite common for sorting, searching,
and order statistics.

We state our problem LONGEST EMPTY INTERVAL
more formally. A sorted set of real numbers 0 = z¢ <
1 < ... < m, = 1is given. An empty interval is an
interval delimited by two consecutive z;,x;41. We can
access z; through index ¢ in constant time. (The z;
are either stored in an array or delivered by an oracle.)
Our goal is to find a longest empty interval, that is,
one with largest difference max;(z;+1 — x;). This can
be trivially done by n read operations (reads for short),
subtractions, and comparisons, respectively, and linear
time is optimal due to an obvious adversary argument.
Define r := 1/ max;(z;+1 — 2;). Supposing that a “very
long” empty interval is expected, with r < n, we want
an algorithm that takes advantage of the small r.

Throughout the paper, logarithms are base 2. We call
the x, values data points. In our complexity bounds we
neglect minor-order terms. To avoid clumsy notation we
also silently suppress factors 1 + o(1) where o(1) tends
to 0 as m grows.

We show that LONGEST EMPTY INTERVAL can be
solved optimally with rlog(n/r) reads. However, in
order to keep the number of other operations within
O(rlog(n/r)) we need some more reads. We have to
add factor 2 (deterministic) or 1.4427 (randomized). We
also study the case of unsorted data point sets, called
LONGEST EMPTY INTERVAL (UNSORTED). Amazingly,
n and r almost switch their roles: We give an algo-
rithm with roughly nlogr comparisons, while the num-
ber of reads is trivially n. We remark that a rather obvi-
ous RAM algorithm using n equidistant buckets solves
LONGEST EMPTY INTERVAL (UNSORTED) in O(n) time,
but for comparison-based algorithms O(nlogr) is opti-
mal, and the simple scheme also fails for similar prob-
lems in higher dimensions. The problem is also known
as maz gap and has an Q(nlogn) lower bound in the al-
gebraic decision tree model [3, 9]. Our algorithms do not
assume prior knowledge of . Another practical advan-
tage is their simplicity, however, several details leading
to the constant factors are a bit tricky, and there re-
main gaps between the current upper and lower bounds.
In the unsorted case, approximate solutions, i.e., large
regions with few data points, can still be obtained in
sublinear time. We give a grid-based method to an-
alyze the performance of an obvious sampling method.

20th Canadian Conference on Computational Geometry, 2008

The last section informally discusses extensions to other
geometric set families.

We conclude the introduction with some motivations
and further related literature.

In the sorted case one may argue that the longest
empty interval could have been computed on the fly,
when the set has been sorted, and this makes up a
minor part of the calculations. But what if distances
in our huge sorted point sets have not been computed
earlier, simply because there was no interest in such
analysis? Then we want to solve the actual problem
as efficiently as possible. There may also arise machine
learning problems where we know that some unknown
“empirical” function is monotone, values are not explic-
itly stored but can be queried by experiments, and we
are mainly interested in large jumps of this function.
In fact, LONGEST EMPTY INTERVAL exhibits striking
similarities to a well-known problem in combinatorial
search: competitive group testing [6, 7].

In [4] we gave algorithms for finding at most s dis-
joint intervals of maximum total length that contain at
most p data points (s, p are fixed parameters). Finding
longest empty intervals in sorted point sets is part of
the preprocessing. Then, it is proved that the optimal
solutions are composed of such intervals from a certain
candidate set whose size depends only on s and p, and it
can be computed by dynamic programming. Only the
time for preprocessing depends on n, therefore we save
a significant fraction of the overall running time by log-
time preprocessing. In range prediction applications as
in [4], the data points come as previously sorted sets.

2 The Sorted Case

Theorem 1 LONGEST EMPTY INTERVAL can be solved
using rlog(n/r) reads, and this bound is optimal.

Proof. The optimality argument is omitted.

The proposed algorithm maintains, in a linked list,
the ordered sequence of data points zj already read.
In every step we take two consecutive data points in
this list with currently largest distance, say x, and xy,
read the data point x|(444)/2) and insert it in our list.
We stop as soon as a + 1 = b. Since x, — z, is the
maximal distance in the sequence, we have found the
longest empty interval at this moment.

To analyze the number of reads, think of this split-
ting process as a binary tree of segments of data points,
in the obvious sense. One read is associated with ev-
ery non-leaf node. Consider the tree upon termination
of the algorithm. A long node represents an interval of
length at least 1/r, other nodes are called short. We
prune the tree as follows. Any pair of short leaf siblings
is removed, making their parent a leaf. The parent node
is always long, since the algorithm has considered inter-
vals by decreasing lengths and stopped at 1/r. After

pruning, one read is associated with every long node.
Since the leaves represent pairwise disjoint intervals, at
most r leaves are long nodes. Every long non-leaf node
is on some path from the root to some long leaf (oth-
erwise we could continue pruning). It follows that all
reads are associated with nodes on paths to at most r
of the leaves. The path length in the tree is trivially
bounded by logn. At most r nodes have depth logr,
and the remaining subpaths from level log r to the leaves
have length at most logn — logr. Since at most r such
paths exist, we get the claimed bound. O

However we have to worry about the other operations,
too. Upon every read we also need two subtractions to
get the lengths of the two new intervals. Thus, the
method needs 2rlog(n/r) subtractions. The catch is
that we need to know the longest interval for the next
split. Using a heap for at most r interval lengths (the
current leaves of the tree), we make, for every read, up
to 4logr length comparisons to include the two new
interval lengths in the heap (and also 5logr copy oper-
ations in the heap). Thus the method in this form costs
4rlogrlog(n/r) comparisons. An optimal number of
reads is good if data access is very expensive, e.g., if
data reside in some external memory. But usually the
costs of reads, comparisons, and subtractions should be
similar. Thus we will next aim at O(rlog(n/r)) oper-
ations in total, with small constant factors. We now
propose a method that still uses binary search, but on
the range of values rather than indices. The number of
reads is only doubled.

Theorem 2 LONGEST EMPTY INTERVAL can be solved
using 2rlog(n/r) reads, 2rlog(n/r) comparisons, and
O(r) subtractions.

Proof. In the jth phase (j = 1,2,3...), we declare
every i/27 (i odd, 0 < i < 27) a grid point. For every
new grid point g, binary search finds k with z; < g <
Tpr1. We call [z, xpy1] the empty interval around g.
We compute the lengths of empty intervals around all
grid points and determine the longest one.

Let p be the exponent with 1/2P < 1/r < 1/2P~1.
Then, a longest empty interval (of length 1/r) contains
a grid point in phase p. Since we have computed the
lengths of empty intervals around all grid points, 1/r
is among these values, and it is the maximum length.
Since every empty interval without grid points is en-
tirely between two consecutive grid points, its length is
at most 1/2P < 1/r, hence we know at this moment that
a longest empty interval is found.

In order to find the empty interval around any new
grid point introduced in phase j, it suffices to do binary
search on the data points between the two neighbored
old grid points. (Recall that we already know the indices
of the leftmost and rightmost data point in this range.)

CCCG 2008, Montréal, Québec, August 13-15, 2008

Since all these search spaces do not overlap, we perform
27~1 binary search procedures on a total of n elements in
phase j. By concavity of log, the total number of search
steps in phase j is maximized if all search spaces have
equal size n/2/~1. Summation over all phases yields the
number of operations: Y, 277 (log 5%r + O(1)) =
2P(logn — p+ O(1)).

The worst case is 1/r < 1/2P71 with an arbitrarily
small difference. Now 2P < 2r yields the upper bound of
2rlog(n/r) search steps. Every search step requires one
read and one comparison. Subtractions are only used
to compute the lengths of empty intervals around the
O(r) grid points. Only O(r) comparisons are needed to
determine the maximum length among them. O

The worst case in the above analysis suggests that
randomization on the grid size might improve the con-
stant factor in the number of reads. In fact, we obtain:

Theorem 3 LONGEST EMPTY INTERVAL can be solved
using an expected number of (1/1n2)rlog(n/r) reads,
(1/In2)rlog(n/r) comparisons, and O(r) subtractions.
(Remark: 1/1n2 < 1.4427.)

Proof. We sample a random ¢ € [1,2) according to
some probability density function ¢ that we specify be-
low, multiply the grid point distances by ¢, and continue
deterministically as in Theorem 2. For formal clarity:
We construct the grid on an interval of length ¢ including
[0, 1], but then we ignore all grid points outside [0, 1].

As in Theorem 2, let p be the exponent with 1/2P <
1/r < 1/2°71 If t < 2P/r then we also have
t/2r < 1/r < t/2P~1. Now we argue, as in Theo-
rem 2, that an empty interval of length 1/r is identi-
fied in phase p. However, since grid points outside the
unit interval are ignored, we perform only 2/~!/t bi-
nary search procedures on disjoint subsets of a set of
n elements, in phase j. The total number of search
steps in phase j is maximized if all search spaces have
equal size tn/27~!. Summing over all phases we get
2027 (log 5 +0(1)) = Z (logn — p+ O(1)).

If t > 2P/r then t/2PT! < 1/r < t/2P. Still we can
argue as above, but with p + 1 in the role of p, which
yields the result (2/¢)2P(logn — p + O(1)).

Define z := 2P/r, and note that 1 < z < 2.
We express the number of reads as (z/t)rlog(n/r) if
t < 27/r, and 2(x/t)rlog(n/r) if ¢ > 2P/r. Specif-
ically, we use density ¢(t) = 1/(tIn2) for sampling.
(In fact, ¢ is a density function, due to ff dt/t =
In2). Thus we obtain in front of rlog(n/r) the fol-

lowing expected factor: (flx +q(t)dt + 2 fj %q(t)dt) =

x z 2 T
m(fl mdt 2 [t%dt> = me(f-3+3-3) =
ﬁ. The other bounds follow as in Theorem 2. O

It remains open, even in the randomized case,
whether rlog(n/r) reads are sufficient together with

O(1)rlog(n/r) other operations. More generally, a
smooth trade-off between reads and comparisons would
be nice. Apparently this would require to “bridge”
somehow between binary search on indices and values.

3 The Unsorted Case

In order to solve LONGEST EMPTY INTERVAL (UN-
SORTED), we have to read all n data points x;, since
any missing x; could fall into the largest empty interval
of the rest of the data set. Hence the number of reads is
not interesting. We focus on comparisons and subtrac-
tions. Trivially, sorting the x; solves the problem by
nlogn comparisons and n subtractions, but for r < n
we can avoid sorting and save almost a logn factor:

Theorem 4 LONGEST EMPTY INTERVAL (UNSORTED)
can be solved using n(logr + 3) + 4r comparisons and
O(r) subtractions, and nlogr is a lower bound for the
number of comparisons.

Proof. Again we perform binary search on [0, 1], insert-
ing grid points i/27 (i odd) in phase j, but this time we
divide the data points recursively into subsets situated
between any two neighbored grid points. If j phases are
needed, this costs altogether nj comparisons between
data points and grid points. After each phase we check
which of the mentioned subsets became empty. This
step is simple: To every new grid point we attach a dis-
crete variable that tells us whether some data point went
to the left and to the right subset. As soon as we get
some empty subset(s) in our partitioning, we know that
the largest empty interval is formed by the rightmost
data point in some nonempty subset and the leftmost
data point in the next nonempty subset to the right. All
candidates are found by n comparisons in total, because
the linear order of subsets is known, and minimum resp.
maximum search is done on disjoint subsets. If j is the
final phase, at most 27 subtractions yield the interval
lengths, and 27 further comparisons return the result.
Once more, let p be the exponent with 1/27 < 1/r <
1/2P=1. We detect an empty subset when two grid
points hit the largest empty interval, which happens
in phase j < p+ 1. Hence j < logr + 2, furthermore
27 < 2Pl < 4y, Summation of comparisons in binary
search and candidate selection yields the bound. The
lower bound argument is omitted. O

It is not possible to find exactly the largest empty in-
terval in sublinear time. On the other hand, for statis-
tical inference and data mining, a relaxed optimization
goal is still appropriate: Find a large interval containing
at most a given fraction of data points (as in [4]). Then
we can sample from the data points and estimate the
point numbers in intervals. The question is how reliable
the inferred “sparse” intervals are.

20th Canadian Conference on Computational Geometry, 2008

For technical reasons we further modify the problem
statement in two ways, without changing its “essence”:
Firstly, instead of a huge set of data points we assume an
unknown continuous probability distribution on [0, 1] to
sample from. Secondly, instead of searching for an inter-
val with given probability mass ¢ and maximum length
L, we search for an interval with given L and minimum
q. (Note that the length of an interval is “observable”,
whereas probability mass can only be estimated.) Now
we can measure the performance simply by the compet-
itive ratio ga/q, where g4 is the probability mass of the
interval selected by the algorithm, and ¢ is the minimal
probability mass among all intervals of length L. We
get the following trade-off, with § = ¢4/q — 1:

Theorem 5 Given some L < 1 and an unknown proba-
bility distribution on the unit interval, let q be the mini-
mum probability mass of the intervals of length L. Then
one can, in O(mlogm) time, sample an expected num-
ber of m points and specify an interval of length L with
probability mass smaller than (14 9)q, subject to an er-
ror probability less than

%(1 +1/6) exp(—mq%), for any positive § and h.
Proof. Sample m points and take an interval A of
length L with least number of sampled points. The
probability of g4 > (1+9)g is limited by a union bound,
applied to a finite “grid” of intervals G so that every too
heavy A contains some G. Details are omitted. |

After a slight refinement of the proof we can replace
factor 2 with the smaller % The free parameter h may
be choosen so as to minimize the error bound. In par-
ticular, taking h = mgd gives the best asymptotics for
large m. Here we obtain m(1 + ¢) exp(—mq%). For
a given sample size m, the bound can also be used to
compute 1+ § that are achievable with high probabil-
ity, depending on ¢. For very small ¢, these § are large,
however, the “absolute” probability mass ¢(1+) of the
returned interval is more interesting than the competi-
tive ratio in this case.

4 Further Research: Other Geometric Set Families

It remains to improve the various complexity and prob-
ability bounds and to close the gaps. In this paper
we have focused on intervals, but the ideas are much
more general. In the final remarks we sketch some ex-
tensions to be considered in further research. The k
longest empty intervals, as needed in [4], can be found
by slight modifications of our strategies. Bounds are
similar, when 1/r is redefined as the length of the k-
th longest empty interval. For analoguous problems
in d-space, e.g., the largest empty (axis-parallel) box
in [0,1]¢, a scheme as in Theorem 4 still works, with
some relaxation: Since we lack total order, we cannot

get optimal results in o(nlogn) time, but (1 — 1/s)-
approximations in O(n(logr+log s)) time, where 1/r is
the volume of the result. Hidden factors depend on d.
The sampling approach of Theorem 5 works similarly
for other geometric set families F, too, once there is an
efficient algorithm for finding large sets in F with few
data points. A technical difficulty of the analysis is to
define suitable “grids”: For any probability distribution
we need a finite family G so that every set of F has a
subset in G with small loss of probability mass. Granu-
larity can be chosen so as to minimize the union bound.
The cardinality of G appears as a factor, but loss affects
the negative exponent in the exp term. For unions of
s intervals (s fixed) we can proceed as in Theorem 5,
only the loss is multiplied by s, since we cut intervals
at each end, and the cardinality of G goes as (h/q)?*~ 1.
For boxes in d-space we can simply use slices in the d
axis directions. For families F like disks or balls, grid
construction is possible, too, but more complex, since
“heavy” borders of sets in F must be sliced.

References

[1] A. Aggarwal, S. Suri. Fast algorithms for computing the
largest empty rectangle, Symp. on Comput. Geometry
1987, 278-290

[2] M.J. Atallah, G.N. Frederickson. A note on finding a
maximum empty rectangle, Discrete Applied Math. 13
(1986), 87-91

[3] M. Ben-Or. Lower bounds for algebraic computation
trees. 15th ACM STOC 1983, 80-86

[4] A. Bergkvist, P. Damaschke. Fast algorithms for find-
ing disjoint subsequences with extremal densities, Pat-
tern Recognition 39 (2006), 2281-2292, abstract in: 16th
ISAAC 2005, LNCS 3827, 714-723

[5] B. Chazelle, L.R.S. Drysdale, D.T. Lee. Computing the
largest empty rectangle, SIAM J. Comp. 15 (1986),
550-555

[6] D.Z. Du, H. Park. On competitive group testing, STAM
Journal Comp. 23 (1994), 1019-1025

[7] D.Z. Du, G. Xue, S.Z. Sun, S.W. Cheng. Modifications
of competitive group testing, SIAM Journal Comp. 23
(1994), 82-96

[8] J. Edmonds, J. Gryz, D. Liang, R.J. Miller. Mining for
empty rectangles in large data sets, Theor. Computer
Science 296 (2003), 435-452

[9] D.T. Lee, Y.F. Wu. Geometric complexity of some lo-
cation problems, Algorithmica 1 (1986), 193-211

[10] B. Liu, L.P. Ku, W. Hsu. Discovering interesting holes
in data, 15th IJCAI 1997, 930-935

[11] M. Orlowski. A new algorithm for the largest empty
rectangle problem, Algorithmica 5 (1990), 65-73

