
CCCG 2009, Vancouver, BC, August 17–19, 2009

Packing 2× 2 unit squares into grid polygons is NP-complete

Dania El-Khechen∗ Muriel Dulieu†‡ John Iacono†§ Nikolaj van Omme¶

1 Introduction

In a packing problem, the goal is to put some small ob-
jects disjointly into a large container, while optimizing
some objective function. The packing problem is very
general, and a rich variety of objects and containers are
possible. One major split in the taxonomy of packing
concerns whether the objects to be packed are allowed
to be different or are all identical. In the case of iden-
tical packing, probably the simplest non-trivial variant
is the following problem, which we call the 2 × 2 pack-
ing problem: How many axis-aligned 2× 2 squares can
be packed inside a polygon P with n edges drawn on a
unit grid, where the squares must be packed such that
each occupies exactly four grid locations (i.e. rotation or
fractional placement is forbidden)? Whether the prob-
lem when P is restricted to be simple (the 2× 2 simple
packing problem) is polynomial or NP -complete appears
on the open problem project [1] as problem 56. There
they cite [3] as proving the 2× 2 packing problem NP -
complete (where P must be allowed to have holes). This
is not true, as in [3] they do prove NP -completeness, but
only when all possible locations where the squares could
be packed are explicitly provided in the input. Since the
size of a normal representation of a grid polygon using
binary integers can differ exponentially from the num-
ber of possible packing locations inside the polygon (e.g.
a k×k square requires Θ(log k) bits to represent but has
Θ(k2) packing locations), it does not follow from their
result that the 2 × 2 packing problem is in NP if the
input is simply a polygon. The result of [3] does prove
NP -hardness for 2 × 2 packing problem. This paper
is devoted to proving the 2 × 2 packing problem is in
NP , and thus, combined with the work of [3] proves
NP -completeness for the first time. Whether the 2× 2
simple packing problem is polynomial or NP -complete
remains an important open question, and remains open
quite surprisingly even if P is restricted to be orthogo-
nally convex. A simple greedy algorithm works for Man-
hattan Skyline polygons [2], the most complex class of
polygons for which a polynomial algorithm is known.
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A closely related problem is the pallet loading prob-
lem. It appears as problem 55 on the Open Problems
Project [1]: “Given two pairs of numbers, (A, B) and
(a, b), and a number n, decide whether n small rectan-
gles of size a× b, in either axis-parallel orientation, can
be packed into a large rectangle of size A × B.” This
problem is not known to be in NP . It shares many of
the same issues as the 2×2 packing problem considered
here, where the size of an explicit representation of the
packing is not necessarily polynomial in the size of the
input. The main impediment to showing pallet loading
is in NP is the issue of orthogonal rotations, which in
our 2× 2 packing problem are thankfully not relevant.

2 Definitions

Definition 1 Given a simple orthogonal grid polygon
P with n edges, let max(P ) be the maximum number
of axis-aligned 2 × 2 squares that can be packed into
P . We call any packing of P with max(P ) axis-aligned
2 × 2 squares maximum. The decision version of the
2×2 packing problem is given P and a integer k, report
if max(P ) ≤ k.

We call a 2 × 2 square a block, while a 1 × 1 unit of
the underlying grid we call a square. Blocks have one
of four types bases on the parity of coordinates of their
vertical and horizontal edges. By adjacent we mean
edge-adjacant. We call a maximal adjacent set of blocks
a superblock. In a packing, maximal adjacent squares
not covered by blocks are called holes. Holes and blocks
are classified as interior or exterior based on whether
they are adjacent to the boundary of P . We call a 1×1
interior hole a unit hole. An interior unit hole is adjacent
to four blocks, one of each type. There are two possible
configurations of the four blocks around a unit hole,
which we call the spin (See Figure 3); every hole has
p-spin or n-spin. We call the edge where two blocks of
different types meet a skeleton edge. (See Figure 4).

3 Regularizing

Lemma 1 For any P , there is a maximum packing of
P where the interior holes are unit. We call such a
packing a partially-regularized maximal packing of P .

Proof. We say two blocks in a packing are aligned if
their enclosing rectangle has width or height 2 and there



21st Canadian Conference on Computational Geometry, 2009

are no other blocks in the enclosing rectangle. The
alignment score of a packing is the number of aligned
pairs of blocks. The gravity score of a packing is the sum
of the x and y coordinates of the centers of all blocks in
the packing. Given two packings, the better one is the
one with more blocks. If two packings have the same
number of blocks, the better one is the one with the
higher alignment score. If two packings have the same
number of blocks and the same alignment score, the bet-
ter one is the one with smaller gravity score. Let K be
(one of the) best packings of P . We argue that K only
has unit holes in the interior; if it does not we show
there is a better packing, a contradiction. If K does
not have only unit holes in the interior it must have one
1 × 2 (or by symmetry a 2 × 1) hole in the interior. In
Figure 2, starting with the assumption of a 1×2 hole we
enumerate a number of cases. For each of these cases we
show in Figures 5-9 that there is a better packing. �

Lemma 2 Let K be an arbitrary optimal packing of P
with a minimum area of interior holes. The packing K
must only have unit holes in the interior.

Proof. We now use the cases developed for the previous
lemma in an algorithmic manner. Suppose K has a
1 × 2 hole. Determine which case you are in according
to Figure 2 and for each case a new, better, equal-sized
packing is obtained or it is concluded that the packing
was not optimal. In all cases where a new packing is
obtained, there is a new 1× 2 non-covered region. This
new non-covered region is part of a hole that is either
interior or exterior. If it is exterior, that contradicts
that K had the minimum area of interior holes (since
an area of two was transferred from an interior hole to
and exterior one). If it is interior, apply this procedure
to the new packing. This process must terminate since
at each step we get a better packing. And the only ways
to terminate is to contradict that K is a optimal packing
or that K has the minimum area of interior holes. Thus
the assumption that K has a 1 × 2 hole is false and K
only has 1× 1 holes. �

In a partially regularized maximum packing of a poly-
gon P , we call a sequence of vertical skeleton edges dis-
joint only at interior unit holes a vertical microbone1.
All vertical microbones in a partially regularized maxi-
mum packing begin either on an edge of P or at a ver-
tical distance 1 away from P ; this is because given two
adjacent boxes of different type with a vertical skele-
ton edge between them, boxes of different type must
continue to be on either side of the vertical extension
of the skeleton edge until a hole or the exterior of the
polygon is encountered. The union of a microbone, its
extensions adjacent to unit holes, and the possible two

1From here on consider all definitions and claims to include
the symmetric and rotated variants

unit-length grid edges to connect to P forms the bone.
Note that the union of all bones partition P into regions
such that each region is either a hole or contains blocks
of only one type.

Given a vertical bone b in a maximum packing of a
polygon P with the minimum area of interior holes, call
l(b) the set of squares in the packing to the left of b and
adjacent to b. Look at a bone which has a top and bot-
tom which are not incident to or within distance 2 of a
vertex of P . Call this a floating bone. Given a floating
bone in a maximum packing of a polygon P with the
minimum area of interior holes, define the shift right
operation as follows: remove the squares l(b) from the
packing and insert a copy of r(b) shifted two units to
the left (See Figure 11). We need to argue that this
gives a valid packing; this is done by observing that in
all cases an arbitrary square in r(b) will have a vacant
space immediately to its left after the removal of l(b). If
|l(b)| = |r(b)| then a left or right shift on b will preserve
the size of the packing; if they are not equal than either
a left or right shift will increase the size of the packing
by |l(b) − r(b)| and show that the original was not op-
timal. By the same logic the number of interior holes
must remain the same. Also note that after a shift, the
bone has moved two units in the direction of the shift.
The shifting of a bone can not cause any 1× 2 holes to
appear (for example by moving a hole next to the hole
in another bone), as this would by Lemma 2 indicate
that the packing does not have a minimum number of
interior holes.

Lemma 3 For any P , there is a partially regularized
maximum packing of P where all bones have at least
one endpoint on P within 2 units from a vertex of P .
We call such a packing fully regularized.

Proof. Suppose all maximum packings of P with a
minimum number of interior holes have at least l bones
that are at least k ≥ 3 units away from a vertex of P .
By performing a left or right shift on a bone of distance
k from a vertex, a packing of the same size is obtained
that has a bone that is k − 2 away from the closest
vertex, a contradiction. Thus the lemma follows. �

Lemma 4 In a fully regularized packing of P , all unit
holes have x and y coordinates within O(n) of that of
two vertexes of P . Thus for any P there are only O(n4)
possible unit hole locations.

Proof. By Lemma 3, there are only O(n) bones in a
fully regularized packing. Since any unit hole is at the
intersection of two bones, there are only O(n) unit holes
on a bone, and O(n2) unit holes total in a regular pack-
ing. The horizontal extent of a vertical bone (or vice-
versa) is given by the number of unit holes on it and
is thus O(n). Since unit holes can only appear at the
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intersection of bones, their x and y-coordinates must be
within O(n) of that of a vertex of P . �

Call a bone in a regularized packing of P that is not
incident to a unit hole a chordal bone. By Lemma 3
there are only O(n) possible locations for a chordal bone
in a regularized packing.

4 Algorithm

Lemma 5 Given a polygon P with n vertexes presented
as a array of binary numbers with a total of N bits, a
skeleton which partitions P into m regions, and a type
assignment for each region, the size of the packing can
be determined in time polynomial in N and m.

Proof. For any polygonal region with k edges, deter-
mining the number of blocks of one particular type that
can be packed in is simple to do (e.g. via line sweep)
and can be done with k log k coordinate arithmetic op-
erations. Since each coordinate is a number with at
most N bits, coordinate arithmetic can be done in time
polynomial in N . For any one region we know k = O(n)
and n ≤ N . The count operation can be repeated for
each of the m regions to obtain a total count. �

Theorem 6 Given a simple orthogonal grid polygon P
with n vertexes presented as a array of binary numbers
with a total of N bits and a positive integer k, the deci-
sion problem max(P ) ≤ k is in NP.

Proof. There are only O(n4) possible locations for unit
holes and O(n) locations for chordal bones in a regular-
ized packing of a polygon P . A subset of these can be
chosen nondeterministically, and the spin of the holes
can be chosen nondeterministically as well. From this
the complete skeleton of size at most O(n4) can be com-
puted in polynomial time by extending four skeleton
lines form every unit hole in a manner consistent with
its parity. If two lines of the skeleton cross not at a unit
hole, it is not a valid skeleton. This leaves a partition of
the plane into regions. Each unit hole, together with its
spin, assigns a type to each of the four incident regions;
if there is any conflict it is not valid. Finally, regions
incident only to chordal bones (and not unit holes) do
not have a type assigned. Since there are only four types
and O(n) such regions, this can be done in NP . Finally
by Lemma 5, the size of the packing can be computed.
If it is at most k then “yes” is returned by that branch
of the nondeterministic algorithm. �

Corollary 7 Given a simple orthogonal grid polygon P
with n vertexes presented as a array of binary numbers
with a total of N bits and a positive integer k, the deci-
sion problem max(P ) ≤ k is NP-complete.

Proof. Follows from Theorem 6 and the proof of NP -
hardness in [3]. �
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Figure 2: When there is a 1× 2 uncovered region in an interior hole,
this figure shows a decision process to determine which case should
be used, excluding symmetries. For example, look at the root and
its three children. At the root is a 1× 2 uncovered region, and there
are three choices. This region is either surrounded (it is a hole with
block on all sides) or there is at least one additional uncovered square
adjacent to its boundary. This could result in one of two (excluding
symmetries) possible three-square uncovered regions. The surrounded
case is (a) and is illustrated in Figure 5, while the case of three empty
square in a row is (e) which is considered in Figure 9. However,
the 2× 2 L-shaped case requires additional subcases determined in a
similar manner to that described for the subcases of the root. The red
arrows indicate when we reach a case that properly contains another
case.

Figure 3: Spin

Figure 4: Illustration to help the reader understand the terminology.
The green regions are holes. The dark green regions are internal 1 ×
1 holes, or unit holes. The light green regions are external holes.
The white lines are the bones, and separate blocks (blue squares)
of differing parity. The bones do not intersect and meet internally
only at unit holes. The two leftmost bones, which span the polygon
without encountering a unit hole, are chordal bones.

http://maven.smith.edu/~orourke/TOPP/
http://maven.smith.edu/~orourke/TOPP/
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Figure 5: Case (a). Given a 1 × 2 hole completely surrounded by
blocks, there are three possible local configurations, excluding sym-
metries (top). By moving one block on each of the right two subcases
to create the figures on the bottom, the packing size stays the same
but the alignment score increases by two. In the left subcase, the
alignment score does not decrease, but one of the two moves illus-
trated will result in a decrease of gravity, depending on the direction
of gravity. All subcases result in two new uncovered adjacent holes.

Figure 6: Case (b). Given a 2×2 L shape hole completely surrounded
by blocks, there is only one possible local configuration, excusing sym-
metries (top). There are three possible reconfigurations illustrated
(bottom). All of them yield packings of the same size; none of them
will ever have a decrease in alignment score. Depending on the direc-
tion of gravity, one of the three will have a reduction in the gravity
score. All result in two new uncovered adjacent holes.

Figure 7: Case (c). Given the pictured S-shape hole (green) com-
pletely surrounded by blocks, there is only one possible local config-
uration, excusing symmetries (right). By moving the two blocks in-
wards, the size of the packing stays the same but the alignment score
increases by 4. This creates two new pairs of uncovered adjacent holes

Figure 8: Case (d). Place a block in the hole. This gives a better
packing, contradicting maximality.

Figure 9: Case (e). Here we have a 1 × 3 hole. The green rectangle
is the maximal 1 × k hole, k ≥ 3 that the 1 × 3 hole is contained
in. There are two cases depending on whether the two blocks at the
end of the green rectangle have the same (top) or different (bottom)
vertical parities. In the top case, the pink blocks are all those blocks
incident to the top edge of the green hole. There must be at least one
or else there would be a 2 × 2 hole and case (d) could been applied.
By moving all of these pink squares down one, the alignment score
increases by 2. In the bottom case there must be a block in one of the
two extreme right positions above the green rectangle (pink) and one
block in one of the two extreme left positions below the green rectangle
(blue); otherwise there would be a empty 2 × 2 hole, a contradiction
by case (d). Depending on the direction of gravity, either moving
the pink block down or the blue block up will give a packing of the
same size and alignment score but with a smaller gravity score. All
subcases result in two new uncovered adjacent squares.

Figure 10: Case (f) Given the green three-step staircase as a hole or
subset of a hole (left), there must be blocks in the two orange shaded
locations, or else there would be a 2 × 2 hole and case (d) could be
applied. But placing a block in either location (right) forces the other
location to be empty, a contradiction.

Figure 11: Illustration to help the reader understand the shift left
operation. The packing before the shift is to the left. The bone b
is illustrated in white, the blocks in l(b) are shaded yellow while the
blocks in r(b) are shaded red. On the right is the result of the shift.
The yellow blocks have been removed and a copy of the red blocks
has been placed two units to the left. The bone has moved two units
left.
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