
CCCG 2009, Vancouver, BC, August 17–19, 2009

Optimal Empty Pseudo-Triangles in a Point Set∗

Hee-Kap Ahn† Sang Won Bae† Iris Reinbacher†

Abstract

Given n points in the plane, we study three optimiza-
tion problems of computing an empty pseudo-triangle:
we consider minimizing the perimeter, maximizing the
area, and minimizing the longest maximal concave
chain. We consider two versions of the problem: First,
we assume that the three convex vertices of the pseudo-
triangle are given. Let n denote the number of points
that lie inside the convex hull of the three given ver-
tices, we can compute the minimum perimeter or maxi-
mum area pseudo-triangle in O(n3) time. We can com-
pute the pseudo-triangle with minimum longest con-
cave chain in O(n2 log n) time. If the convex vertices
are not given, we achieve running times of O(n log n)
for minimum perimeter, O(n6) for maximum area, and
O(n2 log n) for minimum longest concave chain. In any
case, we use only linear space.

1 Introduction

A pseudo-triangle is a simply connected region of
R2with exactly three convex vertices such that the
boundary curves connecting pairs of these convex ver-
tices must be concave. When all three boundary curves
are polygonal, a pseudo-triangle is a simple polygon
with exactly three convex vertices, that is, all the other
vertices are concave (we consider a vertex with inter-
nal angle π to be concave). By definition, any triangle
is a pseudo-triangle. Moreover, the convex hull of any
pseudo-triangle is a triangle.

Pseudo-triangles were introduced in the context of
computing visibility relations among convex obstacles
in R2 [8, 7]. Later, a number of different optimiza-
tion problems of pseudo-triangulations, partitionings
of a region into polygonal pseudo-triangles, have been
studied [1, 2, 5, 6, 9]. For an overview of pseudo-
triangulations, we refer to the survey by Rote et al. [10].

Here, we are interested in an “empty” pseudo-triangle
in the sense that, given a finite set of points in R2, it
contains no points from the set in its interior. In par-
ticular, we consider the following problems: (1) either
minimizing the perimeter or maximizing the area of the

∗This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, Basic Re-
search Promotion Fund) (KRF-2007-331-D00372).

†Department of Computer Science and Engineering,
POSTECH, {heekap, swbae, irisrein}@postech.ac.kr

empty pseudo-triangle, and (2) minimizing the longest
maximal concave curve of the empty pseudo-triangle.
We first study these problems when the three convex
vertices are given. We will later consider optimizations
over all possible pseudo-triangles in a point set.

2 Empty Pseudo-Triangles with Given Corners

In this section, we consider finding empty pseudo-
triangles in a given triangle that contains a set P of
n points in its interior.

2.1 Preliminary Observations

Observation 1 Every empty pseudo-triangle parti-
tions P into three subsets.

It follows that the convex hull of each subset is enclosed
by the convex hull of each concave curve. An empty
pseudo-triangle that either minimizes the perimeter or
maximizes the area, is a simple polygon with concave
vertices taken from P such that there are no points of
P in its interior. The longest maximal concave curve
is minimized by a concave polygonal chain on vertices
of P . Therefore, it suffices to find an empty polygo-
nal pseudo-triangle for each of the three optimization
problems, and in the remainder of the paper we only
consider such polygonal pseudo-triangles.

Let T, L, and R be the three corners of the input tri-
angle. W.l.o.g. we assume that the segment connecting
L and R is horizontal with L to the left of R, and that
T lies above the segment. Let P be a set of n points in-
side the triangle. We let L = t0, t1, . . . , tn, tn+1 = R
be the sequence of points in P ∪ {L, R} sorted in
counter-clockwise order around T . Similarly, let R =
l0, l1, . . . , ln, ln+1 = T be the sorted sequence around
L, and let T = r0, r1, . . . , rn, rn+1 = L be the sorted
sequence around R in counter-clockwise order.

Assume that we are given an empty pseudo-triangle.
At each corner, there are two concave chains, left and
right. Let li, rj , and tk be the first vertices encountered
when we follow the left concave chain from L,R, and
T , respectively. Figure 1 shows these vertices and three
lines, each induced by a corner and its corresponding
vertex. Consider the gray region bounded by the lines
`(L, li) and `(T, tk). All points from P inside the gray
region must be enclosed by the concave chain connecting
L and T . Therefore the polygonal chain enclosing the

21st Canadian Conference on Computational Geometry, 2009

T

L R

li

tk

rj

Figure 1: Every empty pseudo-triangle can be uniquely
determined by a tuple (i, j, k) of indices.

points in the gray region is uniquely defined by li and tk,
and we denote the chain by CL(i, k). Analogously, the
concave chain CT (k, j) connecting T and R is uniquely
defined by tk and rj , and the concave chain CR(j, i)
connecting R and L is uniquely defined by rj and li.

Lemma 1 Every empty pseudo-triangle is uniquely de-
termined by a tuple (i, j, k).

Let τ(i, j, k) be the empty pseudo-triangle determined
by the tuple (i, j, k). Note that not every tuple deter-
mines an empty pseudo-triangle.

For a polygonal chain C, let |C| be the total sum
of the edge lengths in the chain. Then |τ(i, j, k)| =
|CL(i, k)|+ |CT (k, j)|+ |CR(j, i)|. So we can formulate
the problem of finding the minimum perimeter pseudo-
triangle as follows.

min{|τ(i, j, k)| | 1 ≤ i, j, k ≤ n, τ(i, j, k) is empty}

Note that the problem of finding the maximum area
pseudo-triangle can be formulated likewise, except that
the area must be maximized.

2.2 Minimizing the Perimeter or Maximizing the
Area

Recently, van Kreveld and Speckmann showed that
given a triangle with n points inside it, there can be
Θ(n3) different empty polygonal pseudo-triangles [11].
By Lemma 1, each of them is uniquely determined by a
tuple (i, j, k). A brute-force (n4)-time algorithm can be
designed as follows: for every pair of indices (i, j), iter-
ate k from 1 to n and compute the two concave chains,
CL(i, k) and CT (k, j). During the iteration on the in-
dex k, we can compute CL(i, k + 1) from CL(i, k), and
CT (k + 1, j) from CT (k, j) in linear time.

To reduce the time complexity, we propose a faster
way to compute the chains CL(i, k) and CT (k, j). For
an index i, we define

CL(i) :=
⋃

k∈[1,n+1]

CL(i, k).

li

L

T

Figure 2: CL(i) consists of a star-graph SL(i)(dotted
segments) and a tree UL(i)(solid segments).

By definition, li is the first vertex along CL(i, k), there-
fore the vertices of CL(i, k) must lie in a wedge (or on
its boundary) bounded by the lines `(L, li) and `(T, li)
and lying above li as in Figure 2. Let PL(i) be the
set of points from P that lie in the wedge, and let
KL(i) := {k | 1 ≤ k ≤ n, tk ∈ PL(i)}.

Lemma 2 CL(i) consists of 2|KL(i)| noncrossing seg-
ments.

For CL(i), let SL(i) denote the set of segments connect-
ing T and tk with k ∈ KL(i), and let UL(i) denote the
set of segments in CL(i) \ SL(i). Then UL(i) is a tree
with root L that spans all vertices in PL(i) \ {T}.

Similarly, we define CT (j) :=
⋃

k∈[1,n+1] CT (k, j), and
the set PR(j) ⊂ P of all points that lie above rj and in
the wedge bounded by the lines `(T, rj) and `(R, rj).
Then CT (j) also consists of 2|KT (j)| noncrossing seg-
ments, where KT (j) := {k | 1 ≤ k ≤ n, tk ∈ PT (j)}.

2.2.1 Minimizing the perimeter

The following algorithm shows how to find for a pair
of indices (i, j) the index k that minimizes |CL(i, k)| +
|CT (k, j)|.

Algorithm ShortestPseudo-triangle
Input: A set P of n points inside a triangle
Output: The empty pseudo-triangle with minimum

perimeter
1. Sort P in angular order around L, R, and T
2. for 1 ≤ i, j ≤ n + 1
3. Compute CR(j, i)
4. Build CL(i) and CT (j)
5. for each k ∈ KL(i) ∩KT (j)
6. Traverse UL(i) and UT (j), evaluate

|CL(i, k)| and |CT (k, j)|
7. Maintain the smallest |τ(i, j, k)|

CCCG 2009, Vancouver, BC, August 17–19, 2009

8. return minimum perimeter empty pseudo-triangle

For a fixed pair (i, j) of indices, CR(j, i) can be com-
puted in O(n log n) time by identifying all the points
in P lying below the lines `(L, li) and `(R, rj) in lin-
ear time and computing the convex hull of them and
{L,R}. Once we build CL(i), we traverse the ver-
tices v in UL(i) and store the length of the path from
L to v at v. Let π(v) denote the path length stored
at v. For index k′ = max{k′′ ∈ KL(i) | k′′ < k},
|CL(i, k)| = |Ttk′ | + π(tk′). Similarly, we can compute
|CR(k, j)| once we build CR(j). Therefore, once we have
CL(i) and CR(j), we can compute in linear time both
|CL(i, k)| and |CR(k, j)| for all k ∈ KL(i) ∩KR(j).

It remains to show how to build CL(i) and CR(j) in
linear time. Since SL(i) can be computed in linear time,
we only explain the linear-time construction of UL(i) in
detail. Note that the path from L to any node in UL(i)
is a convex curve. As illustrated in Figure 2, for each
point tk with k ∈ KL(i) we can find its parent in UL(i)
in the angular (clockwise) order of points around T .

Algorithm RootedTree
Input: A corner L and index i
Output: A plane graph UL(i)
1. U ← (li, L)
2. p ← li and q ← NULL
3. for each k ∈ KL(i) in increasing order
4. do Set q ← p and p ← the parent of p in U
5. Let γ be the ray from p towards q
6. while tk is not to the right of γ
7. U ← U ∪ {(tk, q)}
8. p ← tk and q ← NULL
9. return U as UL(i)

Lemma 3 Algorithm RootedTree computes UL(i) in
time O(|KL(i)|).

Proof. By induction on the index k ∈ KL(i). Consider
the points tk for k ∈ KL(i) in increasing order, and
assume that we have computed the tree U ′ rooted at L
up to k′. Then the algorithm sets p = tk′ and q =NULL.
Let k be the index next to k′ in KL(i) and let U be
the tree rooted at L up to k. By assumption, CL(i, k)
consists of the segment connecting tk′ and T , and the
convex chain from tk′ to L. Since tk is not contained
in the convex hull of CL(i, k), U must consist of U ′ and
the segment connecting tk and a vertex in CL(i, k).

Consider a vertex v ∈ UL(i). In the algorithm, we
can see that v is traversed as many times as its degree
in UL(i): once the pointer p moves from v to its parent
node, it never points to v again. This is because the path
from L to any node in U is a convex curve, and once v
is enclosed by the convex hull of of such a convex curve
of U and T , p will never point at v again. Therefore,
the algorithm RootedTree takes O(|KL(i)|) time.

Theorem 4 Given n points inside a triangle, the
empty pseudo-triangle with minimum perimeter can be
computed in O(n3) time using linear space.

2.2.2 Maximizing the area

For a set C we denote its area by ||C||. Then the prob-
lem of maximizing the area of the empty pseudo-triangle
is equivalent to the problem of finding indices i, j
and k that minimize ||τ(i, j, k)|| = ||conv(CL(i, k))|| +
||conv(CT (k, j))||+ ||conv(CR(j, i))||.

Hence, we can solve this problem using the algorithms
of the previous section, except that instead of comput-
ing the length of each concave chain we compute the
area of the convex hull of each convace chain. To do
so, consider the arrangement of CL(i) in the triangle.
Since CL(i) is a plane graph consisting of O(n) seg-
ments, there are O(n) cells in the arrangement. We
can compute the areas of all the cells in linear time by
traversing the tree UL(i).

Theorem 5 Given n points inside a triangle, the
empty pseudo-triangle with maximum area can be com-
puted in O(n3) time using linear space.

2.3 Minimizing the longest concave chain

For a pair of indices (i, j), we define a function h as
follows.

h(i, j) := min
k∈[1,n+1]

max{|CL(i, k)|, |CT (k, j)|}.

Then the problem of minimizing the longest chain
is to find a pair of indices (i, j) that minimizes
max{|CR(j, i)|, h(i, j)}.
Lemma 6 For i, j with 1 ≤ i, j ≤ n, the following in-
equalities hold.

|CB(j, i)| ≤ |CB(j, i + 1)|, |CB(j, i)| ≤ |CB(j + 1, i)|;
h(i, j) ≥ h(i + 1, j), h(i, j) ≥ h(i, j + 1).

Let M be an (n + 1)× (n + 1) matrix with M(i, j) =
max{|CR(j, i)|, h(i, j)}. Since both |CR| and h are
monotone in both indices i and j, the matrix M is uni-
modal in columns and rows. As we did in the previous
section, we can fill an entry M(i, j) in linear time. Since
M is unimodal, for each column we do binary search on
the column, compute only the entries encountered dur-
ing the search, and find the best indices. Since there are
n + 1 columns, we can find the global optimal indices
by computing only O(n log n) entries [4].

Theorem 7 Given n points inside a triangle, the
empty pseudo-triangle that minimizes the longest con-
cave chain can be computed in O(n2 log n) time using
linear space.

21st Canadian Conference on Computational Geometry, 2009

3 Empty Pseudo-Triangles in Point Sets

We now discuss the case where the three convex vertices
are not given in advance. In this case, van Kreveld and
Speckmann showed that the maximum possible num-
ber of empty pseudo-triangles is Θ(n6) [11]. This leads
to a straightforward adaptation of our algorithms from
above to this case: Simply take all possible triples of
points of P as the convex vertices of the pseudo-triangles
and apply the appropriate algorithm. This obviously in-
creases the running time by a factor of O(n3) in each
case, without influencing the space requirement.

However, with a simple observation we can drasti-
cally reduce the running times for the two minimization
problems. For the maximum area problem we get:

Theorem 8 Given n points in R2, the empty pseudo-
triangle with maximum area can be computed in O(n6)
time using linear space.

3.1 Minimizing the perimeter

Lemma 9 Given n points in R2, the empty pseudo-
triangle with minimum perimeter is an empty triangle.

The proof uses the triangle inequality. We can use a
divide-and-conquer approach similar to finding the clos-
est pair of points to find the closest triple of points. We
refer to the book by Cormen et.al. [3] for further details
of the algorithm.

Theorem 10 Given n points in R2, the empty pseudo-
triangle with minimum perimeter can be computed in
O(n log n) time using linear space.

3.2 Minimizing the longest concave chain

Lemma 11 Given n points in R2, the empty pseudo-
triangle that minimizes the longest concave chain is an
empty triangle.

Using this lemma, we can devise a simple greedy ap-
proach: We sort all possible edges on the points of
P by increasing length and insert them into P one by
one. The first triangle that is created has the minimum
longest edge over all possible triangles. This approach
takes O(n2 log n) preprocessing time and O(n2) time to
find the first triangle, and O(n2) space. By using a sim-
ple observation we can improve the space requirement:

Observation 2 When inserting edges by length, the
first triangle is closed before the first crossing occurs.

As there can be no crosssings, it follows directly that we
need to take only the shortest 3n−6 edges into account
for the insertion. We start with an empty array M that
can hold up to 3n − 6 entries. For each point in P ,
we do the following: Sort the edges to all other points

in order of increasing length in an array H, and merge
it with M . All edges that do not fit into M can be
discarded directly. When we have finished the merge
for all points, M contains the 3n − 6 shortest edges in
P , and we can now proceed to consecutively insert the
edges of M by increasing length into P until we close
the first triangle. As we can reuse H for each new point,
and we use only M during the run time, we have reduced
the space complexity to O(n).

Theorem 12 Given n points in R2, the empty pseudo-
triangle minimizing the longest concave chain can be
computed in O(n2 log n) time using linear space.

Acknowledgements We would like to thank Marc
van Kreveld for introducing us to the problem.

References

[1] O. Aichholzer, F. Aurenhammer, H. Krasser, and
B. Speckmann. Convexity minimizes pseudo-
triangulations. Comp. Geom.: Th. Appl., 28(1):3–10,
2004.

[2] O. Aichholzer, D. Orden, F. Santos, and B. Speckmann.
On the number of pseudo-triangulations of certain point
sets. J. Comb. Th. A, 115(2):254–278, 2008.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, Cam-
bridge, MA, 2nd edition, 2001.

[4] E. Demaine and S. Langerman. Optimizing a 2d func-
tion satisfying unimodality properties. In Proc. 13th
Ann. Europ. Symp. Alg. (ESA 2005), pages 887–898,
2005.

[5] J. Gudmundsson and C. Levcopoulos. Minimum
weight pseudo-triangulations. Comp. Geom.: Th. Appl,
38(3):139–153, 2007.

[6] M. Pocchiola and G. Vegter. Pseudo-triangulations:
Theory and applications. In Proc. 12th Annu. ACM
Sympos. Comput. Geom., pages 291–300, 1996.

[7] M. Pocchiola and G. Vegter. Topologically sweeping
visibility complexes via pseudo-triangulations. Discrete
Comput. Geom., 16:419–453, Dec. 1996.

[8] M. Pocchiola and G. Vegter. The visibility complex.
Internat. J. Comput. Geom. Appl., 6(3):279–308, 1996.

[9] G. Rote, F. Santos, and I. Streinu. Expan-
sive motions and the polytope of pointed pseudo-
triangulations. Disc. Comp. Geom., The Goodman-
Pollack Festschrift:699–736, 2003.

[10] G. Rote, F. Santos, and I. Streinu. Pseudo-
triangulations–a survey. In J. E. Goodman, J. Pach,
and R. Pollack, editors, Surveys on Discrete and Com-
putational Geometry-Twenty Years Later, volume 453
of Contemporary Mathematics, pages 343–410. Ameri-
can Mathematical Society, 2008.

[11] M. van Kreveld and B. Speckmann. On the number
of empty pseudo-triangles in point sets. In Proc. 19th
Can. Conf. Comp. Geom (CCCG 2007), pages 37–40,
2007.

