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Abstract

In this paper we study the problem of computing an up-
ward straight-line embedding of a directed graph G into
a point set S, i.e. a planar drawing of G such that each
vertex is mapped to a point of S, each edge is drawn
as a straight-line segment, and all the edges are ori-
ented according to a common direction. We character-
ize the family of directed graphs that admit an upward
straight-line embedding into every one-side convex point
set, that is, into every point-set such that the top-most
and the bottom-most points are adjacent in the convex
hull of the point set. Also we show how to construct up-
ward straight-line embeddings for a sub-class of directed
paths when the point set is in general position.

1 Introduction

Given a planar graph G and a point set S in the plane,
a straight-line embedding of G into S is a mapping of
each vertex of G to a point of S and of each edge of
G to a straight-line segment between its endpoints such
that no two edges intersect. Several variants of this
problem have been studied in the Graph Drawing and
Computational Geometry fields, from both a combina-
torial and an algorithmic point of view. Gritzmann et
al. [6] proved that the class F of undirected graphs that
admit a straight-line embedding into every point set in
general position coincides with the class of outerplanar
graphs. An algorithm to compute a straight-line em-
bedding of an outerplanar graph in O(n log3 n)-time has
been presented by Bose [2], while an optimal Θ(n log n)-
time algorithm [3] is known for trees. The problem of
deciding whether a planar graph admits a straight-line
embedding into a given point set has been proved to be
NP-hard [4].

The version of the problem in which G is an acyclic
directed graph has received less attention in the liter-
ature. Drawings of directed acyclic graphs are usually
required to be upward, i.e., all edges flow in a common
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predefined direction according to their orientation. We
will assume, w.l.o.g., that such a direction is the one
of increasing y-coordinates. Preliminary results in this
scenario have been proved by Estrella-Balderrama et
al. [5]. They prove that no biconnected directed graph
admits an upward straight-line embedding into every
point set in convex position; they provide a character-
ization of the Hamiltonian directed graphs that admit
upward straight-line embeddings into every point set in
general or in convex position. Finally, they describe
how to construct upward straight-line embeddings of
directed paths into convex point sets and prove that
for directed trees such embeddings do not always ex-
ist. However, the directed counterpart of the result by
Gritzmann et al. [6], i.e., a characterization of the fam-
ily

−→F of directed acyclic graphs that admit an upward
straight-line embedding into every point set in general
position is still missing. In this paper we study such a
problem and prove the following results.

- We characterize the family of directed graphs that
admit an upward straight-line embedding into every
one-side convex point set, i.e., a convex point set S in
which the top-most and the bottom-most points are ad-
jacent in the convex hull of S (Section 3).

- We show how to construct upward straight-line em-
beddings of regular paths into point sets in general posi-
tion (Section 4). Regular paths are a family of directed
paths such that, considering the vertices in the order
they appear on the path, every sink is followed by a
source or vice versa.

For reasons of space some proofs are sketched or omit-
ted. A complete version of this paper can be found in [1].

2 Preliminaries

A graph G is outerplanar if it admits a planar em-
bedding in which all vertices are incident to the outer
face. Such an embedding is called outerplanar embed-
ding. The maximal biconnected subgraphs of a graph
G are its blocks. The block-cutvertex tree, or BC-tree,
of a connected graph G is a tree with a B-node for each
block of G and a C-node for each cutvertex of G. Edges
in the BC-tree connect each B-node µ to the C-nodes
associated with the cutvertices in the block of µ. In the
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following we identify a block (resp. a cutvertex) with
the B-node (resp. the C-node) associated with it.

Let G be a directed graph; a vertex v of G is a source
(sink) if v has no incoming (outgoing) edges. An upward
planar directed graph is a directed graph that admits a
planar drawing such that each edge is represented by
a curve monotonically increasing in the y-direction. A
Hamiltonian directed graph G is a directed graph con-
taining a path (v1, . . . , vn) passing through all vertices
of G such that edge (vi, vi+1) is directed from vi to vi+1,
for each 1 ≤ i ≤ n− 1.

A point set in the plane is in general position if no
three points lie on the same line. The convex hull
CH(S) of a point set S is the point set that can be
obtained as a convex combination of the points of S. A
point set is in convex position if no point is in the con-
vex hull of the others. As in [5], we will assume that no
two points of any point set have the same y-coordinate.
Such an assumption avoids the a priori impossibility
of drawing an edge between two specified points of the
point set. Then, the points of any point set S can be to-
tally ordered by increasing y-coordinate. We refer to the
i-th point as the one which has i−1 points with smaller
y-coordinates. Let pm(S) and pM (S) be the first and
the last point of S, respectively. In a convex point set
S two points are adjacent if the segment between them
is on the border of CH(S). We say that S is a one-side
convex point set if pM (S) and pm(S) are adjacent.

3 Upward Straight-line Embeddings of Graphs

In this section we characterize the family
−→F 1 of directed

graphs that admit an upward straight-line embedding
into every one-side convex point set. Notice that since
one-side convex point sets are a special case of point
sets in general position, then

−→F ⊆ −→F 1.
First, we give some properties that must be satisfied

by each block B of a directed graph G in order to admit
an upward straight-line embedding into every one-side
convex point set.

Pr1: B is an outerplanar graph.
Pr2: B has an outerplanar embedding such that the

boundary C of the external face consists of a Hamilto-
nian directed path (s = v1, . . . , vk = t) and of the edge
(s, t).

Pr3: Edges not belonging to C are such that, if an
edge (vi1 , vj1) belongs to B, then no edge (vi2 , vj2) be-
longs to B, with i1 < i2 < j1 < j2.

The necessity of Pr1 and of Pr2 can be easily proved
(see also [5]). We prove the necessity of Pr3. Observe
that, in any upward straight-line embedding of B into
a one-side convex point set, the order of the vertices of
B by increasing y-coordinates is the same as their order
in the Hamiltonian directed path (s = v1, . . . , vk = t),
otherwise an edge (vi, vi+1) would not be upward. Then,

if two edges (vi1 , vj1) and (vi2 , vj2) belong to B, with
i1 < i2 < j1 < j2, they cross.

We call regular every block satisfying Properties Pr1,
Pr2, and Pr3. By Pr2 each regular block B has exactly
one source and one sink, hence in the following, we will
talk about the source of B and the sink of B.

Let T be the BC-tree of a connected directed graph G.
Consider a B-node B of T and a C-node c adjacent to B.
We say that c is extremal for B if it is either the source
or the sink of B, c is non-extremal for B otherwise.
In the following, we build an auxiliary directed tree T ′
starting from T (see Fig. 1). A node µ of T ′ corresponds
to a connected subtree S of T which is maximal with
respect to the following property: A cutvertex c1,2 that
is adjacent in S to two B-nodes B1 and B2 is extremal
for both B1 and B2. An edge of T ′ directed from µ
to ν corresponds to a cutvertex which is non-extremal
for a block associated with µ and extremal for a block
associated with ν.
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Figure 1: (a) A directed graph G. (b) Auxiliary tree T ′
built from the BC-tree T of G.

Now we prove the main result of this section.

Theorem 1 An n-vertex connected directed graph G
admits an upward straight-line embedding into every
one-side convex point set of size n if and only if the
following conditions are satisfied: (1) Each block of G
is regular; (2) No cutvertex shared by two blocks is non-
extremal for both of them; (3) Every node of T ′ has at
most one incoming edge.

Proof sketch: The necessity of Condition (1) has been
already proved before the definition of regular block. To
prove the necessity of Condition (2), we show that, given
any one-side convex point set S, if G contains a cutver-
tex c1,2 that is non-extremal for two blocks B1 and B2

then G has no upward straight-line embedding into S.
Denote by P1 and P2 the Hamiltonian directed paths
of B1 and B2, respectively. Denote by s1 and t1 (s2

and t2) the source and the sink of B1 (B2), respectively.
Further, denote by P (s1, c1,2) (P (s2, c1,2)) the subpath
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of P1 (P2) between s1 and c1,2 (s2 and c1,2). Finally,
denote by v1 (v2) the vertex of B1 coming immediately
before c1,2 in P1 (P2). Suppose, for a contradiction, that
an upward straight-line embedding of G into S exists.
Also suppose, w.l.o.g., that s1 is mapped to a point of S
with y-coordinate smaller than the one of the point of S
where s2 is mapped to. Then, P (s1, c1,2) and P (s2, c1,2)
do not cross only if P (s2, c1,2) is embedded entirely into
points of S between the points where v1 and c1,2 are
mapped to. Since the embedding is upward, vertex t2 is
mapped to a point of S with y-coordinate greater than
the one of c1,2. It follows that edge (s2, t2) crosses edge
(v1, c1,2). We prove the necessity of Condition (3). Sup-
pose that T ′ contains edges (n1, n

∗) and (n2, n
∗) and

suppose, for a contradiction, that an upward straight-
line embedding of G into a one-side convex point set S
exists. By definition of T ′, there exist two blocks B1

and B2 of G associated with nodes n1 and n2 of T ′,
respectively, and there exist two blocks B3 and B4 as-
sociated with node n∗ of T ′ such that a cutvertex c1,3

of G is non-extremal for B1 and extremal for B3, and a
cutvertex c2,4 of G is non-extremal for B2 and extremal
for B4. Note that it is possible that B3 = B4, while
B1 6= B2 and c1,3 6= c2,4. Indeed, if B1 = B2, then
n1 and n2 would not be distinct nodes of T ′; further, if
c1,3 = c2,4, then c1,3 would be non-extremal for both B1

and B2, violating Condition 2 and hence contradicting
the fact that an upward straight-line embedding of G
into S exists. Denote by P1 and P2 the Hamiltonian
directed paths of B1 and B2, respectively. Denote by s1

and t1 (s2 and t2) the source and the sink of B1 (B2),
respectively. Consider any upward straight-line embed-
ding of B1 and B2 into S. In order for the embedding
to be planar, two are the cases, up to a renaming of B1

and B2: Either the vertices of B2 are mapped to points
of S whose y-coordinates are all greater than the ones of
the points of S where the vertices of B1 are mapped to,
or the vertices of B2 are mapped to points of S whose y-
coordinates are all between the ones of two consecutive
vertices of P1, say vi and vi+1. In both cases c1,3 has
y-coordinate either greater than the y-coordinates of all
the vertices of B2 or smaller than the y-coordinates of
all the vertices of B2. This implies that c1,3, s2, c2,4, and
t2 are ordered according to their y-coordinates either in
this order or in the order s2, c2,4, t2, c1,3. The set of
blocks associated with n∗ contains vertices c1,3 and c2,4

and thus it contains a path P ∗ between c1,3 and c2,4.
Path P ∗ is composed by vertices all distinct from the
vertices of B1 (B2), except for c1,3 (c2,4), otherwise B1

and B3 (B2 and B4) would not be distinct blocks of G.
Hence, P ∗ intersects edge (s2, t2).

To prove the sufficiency of Conditions (1)–(3) we de-
scribe how to compute an upward straight-line embed-
ding of G into a given one-side convex point set S. First,
we decide a planar embedding E of G, that is, the order

of the edges incident to each vertex and the outer face
in the final embedding of G into S. Each block Bi of
G with source si and sink ti is embedded in such a way
that the embedding is outerplanar and the external face
is on the right-hand side when walking along edge (si, ti)
from si to ti. We call such an embedding of Bi a regular
embedding of Bi. Note that since the embedding of Bi

is outerplanar, then the outer face of Bi is delimited by
the Hamiltonian directed path of Bi and by edge (si, ti).
A bimodal embedding of a directed graph G is such that
for each vertex of G the circular list of its incident edges
can be partitioned into two (possibly empty) lists, one
consisting of incoming edges and the other consisting
of outgoing edges. The embedding E of G is set as fol-
lows: Consider the subgraph Ta of T whose blocks and
cutvertices correspond to any node a of T ′ without in-
coming edges; choose a path (B1, c1, B2, c2, . . . , Bh) in
Ta such that the source s of B1 is a source of G, the sink
ci of Bi is the source of Bi+1, for each 1 ≤ i ≤ h − 1,
and the sink t of Bh is a sink of G. It is possible to
prove that such a path always exists. Then, the em-
bedding E of G is any bimodal outerplanar embedding
in which the embedding of each block is regular and
path (s, c1, c2, . . . , ch−1, t) has edges consecutive along
the boundary of the outer face of E . The embedding
in Fig. 1 (a) satisfies the properties just described. In
order to compute an upward straight-line embedding of
G into S, we map the vertices of G to the points of S
one at a time. The i-th mapped vertex of G is mapped
to the i-th point of S. Let s be the source of G defined
when deciding the planar embedding E of G. Starting
from s we walk in clockwise direction on the boundary
of the outer face of E . A vertex v of G is mapped to
a point of S when the algorithm visits v and for each
edge (u, v), oriented from u to v, vertex u has already
been mapped to a point of S. The computed drawing is
straight-line and upward by construction; the proof of
its planarity is omitted and can be found in [1]. ¤
The described characterization can be easily exploited
to design a polynomial-time algorithm testing whether
a directed graph admits an upward straight-line embed-
ding into every one-side convex point set or not.

It is also worth noting that a generalization of the
characterization to non-connected graphs is easy, as it
is possible to prove that an n-vertex directed graph ad-
mits an upward straight-line embedding into every one-
side convex point set of size n if and only if each of its
connected components admits an upward straight-line
embedding into every one-side convex point set of size
equal to the number of vertices of the component.

4 Upward Straight-line Embeddings of Paths

Since all directed paths admit an upward straight-line
embedding into every convex point set [5], it is natural
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to ask whether the statement is also true for point sets
in general position. The following theorem gives a par-
tial answer to this question. Let P = (v1, . . . , vn) be
a directed path. We say that P is right-regular if, for
any sink vi 6= vn, vi+1 is a source of P . We say that P
is left-regular if, for any sink vi 6= v1, vi−1 is a source
of P . We say that P is regular if it is either right- or
left-regular.

Theorem 2 Every n-vertex regular path admits an up-
ward straight-line embedding into every point set of size
n in general position.

Proof. Let P be a right-regular path (v1, . . . , vn). If
P is left-regular, the proof is symmetric. Let Ph,k ⊆ P
be the subpath (vh, . . . , vk), where 1 ≤ h ≤ k ≤ n.
Throughout the algorithm, we denote as pi the point of
S where vi is mapped to and we denote as Uh the set
S \ {pj | j = 1, 2, . . . , h}.

Let vj be the sink of P such that j is minimum. If
j = n, mapping vi to the i-th point of S provides an
upward straight-line embedding of P into S. Hence,
assume that j < n. By definition, vj+1 is a source.
Consider the subpath P1,j+1. Each vertex vi of P1,j+1

for i = 1, . . . , j − 1 is mapped to the i-th point of S.
Vertex vj+1 is mapped to point pj+1 = pm(Uj−1), while
pj is mapped to the point of CH(Uj−1) that is adjacent
to pj+1 and that is visible from pj−1 (if both the points
of CH(Uj−1) adjacent to pj+1 are visible from pj−1,
then pj is arbitrarily mapped to one of them). Note
that, if j = n − 1, the drawing is completed. If j = 1,
then P1,j+1 = (v1, v2); in this case v2 is mapped to
the point p2 = pm(S) and vertex v1 is mapped to one
of the two points of CH(S) that are adjacent to p2.
We recursively draw path Pj+1,n into the point set Uj .
Note that vertex vj+1 is considered twice, namely once
when drawing P1,j+1 and once when drawing Pj+1,n;
however, when the drawing of Pj+1,n is computed, vj+1

is placed on the bottom-most point of Uj , which is pj+1.
Therefore vj+1 is mapped twice to the same point.

The computed embedding is straight-line and upward
by construction. We prove that it is planar. The proof is
by induction on the number q of sinks. The case when
q = 1 can be easily proved. Assume that q > 1 and
let vj , where 1 ≤ j ≤ n − 1, be the first sink encoun-
tered moving along P starting from v1. The drawing of
P1,j−1 is trivially planar. We prove now that at least
one of the two points of CH(Uj−1) adjacent to pj+1 is
visible from pj−1. Let p′ and p′′ be the two points of
CH(Uj−1) adjacent to pj+1. Let `′ be the line through
p′ and pj+1 and let `′′ be the line through p′′ and pj+1.
Point p′ is visible from all points below `′ and p′′ is visi-
ble from all points below `′′. Since pj−1 is below pj+1 it
is either below `′, or below `′′, or below both. This im-
plies that at least one between p′ and p′′ is visible from
pj−1 and therefore the algorithm always finds a point

to map pj . Edge (vj+1, vj) does not cross any other
edge of P1,j−1 because it is completely drawn above
point pj−1, and does not cross edge (vj−1, vj) because
it shares an endvertex with such an edge; analogously,
edge (vj−1, vj) does not cross any edge of P1,j−2 because
it is completely drawn above pj−2, and does not cross
edge (vj−2, vj−1) because it shares an endvertex with
(vj−2, vj−1). Thus P1,j+1 is planar. The drawing of
Pj+1,n is planar by induction and it is completely con-
tained in CH(Uj). The drawing of P1,j−1 is completely
contained in CH({p1, . . . , pj−1}). Convex hulls CH(Uj)
and CH({p1, . . . , pj−1}) are disjoint, since the points of
Uj are all above pj−1, hence the edges of P1,j−1 do not
cross with those of Pj+1,n. Further, edge (vj−1, vj) is
external to both CH(Uj) and CH({p1, . . . , pj−1}), and
edge (vj , vj+1) is on the border of CH(Uj) and external
to CH({p1, . . . , pj−1}). ¤

5 Open Problems

The main open problems related to the topic of this
paper remain the ones of characterizing the families of
directed graphs that admit an upward straight-line em-
bedding into every point set in general position and into
every point set in convex position. We believe that de-
termining whether every directed path admits an up-
ward straight-line embedding into every point set in
general position is a problem of its own interest.
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