CCCG 2009, Vancouver, BC, August 17-19, 2009

On Directed Graphs with an Upward Straight-line
Embedding into Every Point Set

Carla Binucci* Emilio Di Giacomo™

Fabrizio Frati*

Abstract

In this paper we study the problem of computing an up-
ward straight-line embedding of a directed graph G into
a point set S, i.e. a planar drawing of G such that each
vertex is mapped to a point of S, each edge is drawn
as a straight-line segment, and all the edges are ori-
ented according to a common direction. We character-
ize the family of directed graphs that admit an upward
straight-line embedding into every one-side convex point
set, that is, into every point-set such that the top-most
and the bottom-most points are adjacent in the convex
hull of the point set. Also we show how to construct up-
ward straight-line embeddings for a sub-class of directed
paths when the point set is in general position.

1 Introduction

Given a planar graph G and a point set .S in the plane,
a straight-line embedding of G into S is a mapping of
each vertex of G to a point of S and of each edge of
G to a straight-line segment between its endpoints such
that no two edges intersect. Several variants of this
problem have been studied in the Graph Drawing and
Computational Geometry fields, from both a combina-
torial and an algorithmic point of view. Gritzmann et
al. [6] proved that the class F of undirected graphs that
admit a straight-line embedding into every point set in
general position coincides with the class of outerplanar
graphs. An algorithm to compute a straight-line em-
bedding of an outerplanar graph in O(n log® n)-time has
been presented by Bose [2], while an optimal ©(nlogn)-
time algorithm [3] is known for trees. The problem of
deciding whether a planar graph admits a straight-line
embedding into a given point set has been proved to be
NP-hard [4].

The version of the problem in which G is an acyclic
directed graph has received less attention in the liter-
ature. Drawings of directed acyclic graphs are usually
required to be upward, i.e., all edges flow in a common
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predefined direction according to their orientation. We
will assume, w.l.o.g., that such a direction is the one
of increasing y-coordinates. Preliminary results in this
scenario have been proved by Estrella-Balderrama et
al. [5]. They prove that no biconnected directed graph
admits an upward straight-line embedding into every
point set in convex position; they provide a character-
ization of the Hamiltonian directed graphs that admit
upward straight-line embeddings into every point set in
general or in convex position. Finally, they describe
how to construct upward straight-line embeddings of
directed paths into convex point sets and prove that
for directed trees such embeddings do not always ex-
ist. However, the directed counterpart of the result by
Gritzmann et al. [6], i.e., a characterization of the fam-
ily .7') of directed acyclic graphs that admit an upward
straight-line embedding into every point set in general
position is still missing. In this paper we study such a
problem and prove the following results.

- We characterize the family of directed graphs that
admit an upward straight-line embedding into every
one-side convex point set, i.e., a convex point set S in
which the top-most and the bottom-most points are ad-
jacent in the convex hull of S (Section 3).

- We show how to construct upward straight-line em-
beddings of regular paths into point sets in general posi-
tion (Section 4). Regular paths are a family of directed
paths such that, considering the vertices in the order
they appear on the path, every sink is followed by a
source or vice versa.

For reasons of space some proofs are sketched or omit-
ted. A complete version of this paper can be found in [1].

2 Preliminaries

A graph G is outerplanar if it admits a planar em-
bedding in which all vertices are incident to the outer
face. Such an embedding is called outerplanar embed-
ding. The maximal biconnected subgraphs of a graph
G are its blocks. The block-cutvertex tree, or BC-tree,
of a connected graph G is a tree with a B-node for each
block of G and a C-node for each cutvertex of G. Edges
in the BC-tree connect each B-node p to the C-nodes
associated with the cutvertices in the block of u. In the
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following we identify a block (resp. a cutvertex) with
the B-node (resp. the C-node) associated with it.

Let G be a directed graph; a vertex v of G is a source
(sink) if v has no incoming (outgoing) edges. An upward
planar directed graph is a directed graph that admits a
planar drawing such that each edge is represented by
a curve monotonically increasing in the y-direction. A
Hamiltonian directed graph G is a directed graph con-
taining a path (v1,...,v,) passing through all vertices
of G such that edge (v;, v;11) is directed from v; to v;11,
foreach 1 <i<n-—1.

A point set in the plane is in general position if no
three points lie on the same line. The convexr hull
CH(S) of a point set S is the point set that can be
obtained as a convex combination of the points of S. A
point set is in convex position if no point is in the con-
vex hull of the others. As in [5], we will assume that no
two points of any point set have the same y-coordinate.
Such an assumption avoids the a priori impossibility
of drawing an edge between two specified points of the
point set. Then, the points of any point set S can be to-
tally ordered by increasing y-coordinate. We refer to the
i-th point as the one which has ¢ — 1 points with smaller
y-coordinates. Let p,,(S) and pp(S) be the first and
the last point of S, respectively. In a convex point set
S two points are adjacent if the segment between them
is on the border of CH(S). We say that S is a one-side
convex point set if pps(S) and p,,,(S) are adjacent.

3 Upward Straight-line Embeddings of Graphs

In this section we characterize the family .721 of directed
graphs that admit an upward straight-line embedding
into every one-side convex point set. Notice that since
one-side convex point sets are a special case of point
sets in general position, then .7') C ?1.

First, we give some properties that must be satisfied
by each block B of a directed graph G in order to admit
an upward straight-line embedding into every one-side
convex point set.

Prl: B is an outerplanar graph.

Pr2: B has an outerplanar embedding such that the
boundary C' of the external face consists of a Hamilto-
nian directed path (s = vq,...,vr = t) and of the edge
(s,t).

Pr3: Edges not belonging to C' are such that, if an
edge (v;,,v;,) belongs to B, then no edge (v;,,v,,) be-
longs to B, with i1 < iy < j1 < jo.

The necessity of Prl and of Pr2 can be easily proved
(see also [5]). We prove the necessity of Pr3. Observe
that, in any upward straight-line embedding of B into
a one-side convex point set, the order of the vertices of
B by increasing y-coordinates is the same as their order
in the Hamiltonian directed path (s = vy,...,v = t),
otherwise an edge (v;, v;41) would not be upward. Then,

if two edges (v;,,v;,) and (v;,,v;,) belong to B, with
11 < i3 < j1 < jo, they cross.

We call regular every block satisfying Properties Prl,
Pr2, and Pr3. By Pr2 each regular block B has exactly
one source and one sink, hence in the following, we will
talk about the source of B and the sink of B.

Let 7 be the BC-tree of a connected directed graph G.
Consider a B-node B of 7 and a C-node c adjacent to B.
We say that c is extremal for B if it is either the source
or the sink of B, ¢ is non-extremal for B otherwise.
In the following, we build an auxiliary directed tree 7"
starting from 7 (see Fig. 1). A node p of 7’ corresponds
to a connected subtree S of 7 which is maximal with
respect to the following property: A cutvertex c; o that
is adjacent in S to two B-nodes B; and Bs is extremal
for both B; and Bs. An edge of 7' directed from p
to v corresponds to a cutvertex which is non-extremal
for a block associated with p and extremal for a block
associated with v.

Figure 1: (a) A directed graph G. (b) Auxiliary tree 7"
built from the BC-tree 7 of G.

Now we prove the main result of this section.

Theorem 1 An n-vertexr connected directed graph G
admits an upward straight-line embedding into every
one-side conver point set of size n if and only if the
following conditions are satisfied: (1) Fach block of G
is reqular; (2) No cutvertex shared by two blocks is non-
extremal for both of them; (3) Every node of T' has at
most one incoming edge.

Proof sketch: The necessity of Condition (1) has been
already proved before the definition of regular block. To
prove the necessity of Condition (2), we show that, given
any one-side convex point set .9, if G contains a cutver-
tex c1 2 that is non-extremal for two blocks By and Bs
then G has no upward straight-line embedding into S.
Denote by P; and P, the Hamiltonian directed paths
of By and Bs, respectively. Denote by s; and t1 (s
and t9) the source and the sink of B; (Bsz), respectively.
Further, denote by P(s1,c¢1,2) (P(s2,c¢1,2)) the subpath
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of Pi (P,) between s; and ¢12 (s2 and c¢12). Finally,
denote by vy (v2) the vertex of By coming immediately
before ¢1 2 in Py (P2). Suppose, for a contradiction, that
an upward straight-line embedding of G into S exists.
Also suppose, w.l.o.g., that s; is mapped to a point of S
with y-coordinate smaller than the one of the point of S
where s, is mapped to. Then, P(s1,¢1,2) and P(s2,¢1,2)
do not cross only if P(sq,c1.2) is embedded entirely into
points of S between the points where v; and c¢; o are
mapped to. Since the embedding is upward, vertex ts is
mapped to a point of S with y-coordinate greater than
the one of ¢ 5. It follows that edge (s2,t2) crosses edge
(v1,c1,2). We prove the necessity of Condition (3). Sup-
pose that 7’ contains edges (n1,n*) and (ng,n*) and
suppose, for a contradiction, that an upward straight-
line embedding of G into a one-side convex point set S
exists. By definition of 7”, there exist two blocks Bj
and By of G associated with nodes n; and ny of 77,
respectively, and there exist two blocks B3 and B, as-
sociated with node n* of 7’ such that a cutvertex ¢; 3
of G is non-extremal for By and extremal for Bz, and a
cutvertex cy 4 of G is non-extremal for B, and extremal
for B4. Note that it is possible that B3 = By, while
B1 7& B2 and C1,3 # C2.4. Indeed, if Bl = Bg, then
n1 and no would not be distinct nodes of 7”; further, if
1,3 = €24, then ¢; 3 would be non-extremal for both By
and Bs, violating Condition 2 and hence contradicting
the fact that an upward straight-line embedding of G
into S exists. Denote by P; and P, the Hamiltonian
directed paths of By and Bs, respectively. Denote by s
and ¢; (sg and t2) the source and the sink of B; (Baz),
respectively. Consider any upward straight-line embed-
ding of By and Bs into S. In order for the embedding
to be planar, two are the cases, up to a renaming of B,
and Bs: Either the vertices of By are mapped to points
of S whose y-coordinates are all greater than the ones of
the points of S where the vertices of By are mapped to,
or the vertices of By are mapped to points of S whose y-
coordinates are all between the ones of two consecutive
vertices of Py, say v; and v;11. In both cases c; 3 has
y-coordinate either greater than the y-coordinates of all
the vertices of By or smaller than the y-coordinates of
all the vertices of By. This implies that ¢ 3, 52, 2,4, and
to are ordered according to their y-coordinates either in
this order or in the order ss,cp4,t2,c1,3. The set of
blocks associated with n* contains vertices c¢; 3 and ¢z 4
and thus it contains a path P* between c; 3 and ¢ 4.
Path P* is composed by vertices all distinct from the
vertices of By (Ba), except for ¢1 3 (c2,4), otherwise By
and Bz (B2 and By) would not be distinct blocks of G.
Hence, P* intersects edge (s2,t2).

To prove the sufficiency of Conditions (1)—(3) we de-
scribe how to compute an upward straight-line embed-
ding of G into a given one-side convex point set .S. First,
we decide a planar embedding £ of G, that is, the order

of the edges incident to each vertex and the outer face
in the final embedding of G into S. Each block B; of
G with source s; and sink t; is embedded in such a way
that the embedding is outerplanar and the external face
is on the right-hand side when walking along edge (s;, t;)
from s; to t;. We call such an embedding of B; a regular
embedding of B;. Note that since the embedding of B;
is outerplanar, then the outer face of B; is delimited by
the Hamiltonian directed path of B; and by edge (s;, t;).
A bimodal embedding of a directed graph G is such that
for each vertex of G the circular list of its incident edges
can be partitioned into two (possibly empty) lists, one
consisting of incoming edges and the other consisting
of outgoing edges. The embedding £ of G is set as fol-
lows: Consider the subgraph 7, of 7 whose blocks and
cutvertices correspond to any node a of 7’ without in-
coming edges; choose a path (By,c1, Ba,ca,...,Bp) in
7, such that the source s of By is a source of G, the sink
¢; of B; is the source of B;;1, foreach 1 <4 < h —1,
and the sink ¢ of By is a sink of G. It is possible to
prove that such a path always exists. Then, the em-
bedding £ of G is any bimodal outerplanar embedding
in which the embedding of each block is regular and
path (s,c1,¢2,...,ch—1,t) has edges consecutive along
the boundary of the outer face of £. The embedding
in Fig. 1 (a) satisfies the properties just described. In
order to compute an upward straight-line embedding of
G into S, we map the vertices of G to the points of S
one at a time. The i-th mapped vertex of G is mapped
to the i-th point of S. Let s be the source of G defined
when deciding the planar embedding £ of G. Starting
from s we walk in clockwise direction on the boundary
of the outer face of £. A vertex v of G is mapped to
a point of S when the algorithm visits v and for each
edge (u,v), oriented from u to v, vertex u has already
been mapped to a point of S. The computed drawing is
straight-line and upward by construction; the proof of
its planarity is omitted and can be found in [1]. O

The described characterization can be easily exploited
to design a polynomial-time algorithm testing whether
a directed graph admits an upward straight-line embed-
ding into every one-side convex point set or not.

It is also worth noting that a generalization of the
characterization to non-connected graphs is easy, as it
is possible to prove that an n-vertex directed graph ad-
mits an upward straight-line embedding into every one-
side convex point set of size n if and only if each of its
connected components admits an upward straight-line
embedding into every one-side convex point set of size
equal to the number of vertices of the component.

4 Upward Straight-line Embeddings of Paths

Since all directed paths admit an upward straight-line
embedding into every convex point set [5], it is natural
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to ask whether the statement is also true for point sets
in general position. The following theorem gives a par-
tial answer to this question. Let P = (v1,...,v,) be
a directed path. We say that P is right-regular if, for
any sink v; # vy, v;41 is a source of P. We say that P
is left-reqular if, for any sink v; # vy, v;_1 is a source
of P. We say that P is regular if it is either right- or
left-regular.

Theorem 2 FEvery n-vertex reqular path admits an up-
ward straight-line embedding into every point set of size
n in general position.

Proof. Let P be a right-regular path (vq,...,v,). If
P is left-regular, the proof is symmetric. Let P, C P
be the subpath (vp,...,v;), where 1 < h < k < n.
Throughout the algorithm, we denote as p; the point of
S where v; is mapped to and we denote as U}, the set
S\{pj |j:17277h}

Let v; be the sink of P such that j is minimum. If
j = n, mapping v; to the i-th point of S provides an
upward straight-line embedding of P into S. Hence,
assume that j < n. By definition, v;4, is a source.
Consider the subpath P; j;i. Each vertex v; of Py j41
for i = 1,...,7 — 1 is mapped to the i-th point of S.
Vertex vj41 is mapped to point p; 1 = pm(Uj—1), while
p; is mapped to the point of CH(U;_1) that is adjacent
to pj+1 and that is visible from p;_; (if both the points
of CH(U;_1) adjacent to p;y1 are visible from p;_1,
then p; is arbitrarily mapped to one of them). Note
that, if j = n — 1, the drawing is completed. If j = 1,
then P; j+1 = (v1,v2); in this case ve is mapped to
the point py = p,,(S) and vertex vy is mapped to one
of the two points of CH(S) that are adjacent to pa.
We recursively draw path Pjy;, into the point set Uj.
Note that vertex v;4; is considered twice, namely once
when drawing P ;11 and once when drawing Pjiq n;
however, when the drawing of P; 1, is computed, v;j41
is placed on the bottom-most point of U;, which is p;;.
Therefore v;11 is mapped twice to the same point.

The computed embedding is straight-line and upward
by construction. We prove that it is planar. The proof is
by induction on the number ¢ of sinks. The case when
q = 1 can be easily proved. Assume that ¢ > 1 and
let v;, where 1 < j < n — 1, be the first sink encoun-
tered moving along P starting from v;. The drawing of
Py ;_ is trivially planar. We prove now that at least
one of the two points of CH(U,_1) adjacent to p,11 is
visible from p;_1. Let p’ and p” be the two points of
CH(U;_1) adjacent to p;jy1. Let ¢ be the line through
p’ and pj;1 and let £’ be the line through p” and pj;41.
Point p’ is visible from all points below £ and p” is visi-
ble from all points below ¢”. Since p;_; is below p; 1 it
is either below ¢', or below £, or below both. This im-
plies that at least one between p’ and p” is visible from
pj—1 and therefore the algorithm always finds a point

to map p,;. Edge (vj+1,v;) does not cross any other
edge of P; j_1 because it is completely drawn above
point p;_1, and does not cross edge (vj_1,v;) because
it shares an endvertex with such an edge; analogously,
edge (vj_1,v;) does not cross any edge of P; j_o because
it is completely drawn above p;_», and does not cross
edge (vj_2,v,-1) because it shares an endvertex with
(vj—2,vj-1). Thus Pj jy1 is planar. The drawing of
Pj1.n is planar by induction and it is completely con-
tained in CH(U;). The drawing of P; ;_; is completely
contained in CH({p1,...,pj—1}). Convex hulls CH(Uj;)
and CH({p1,...,pj—1}) are disjoint, since the points of
U; are all above p;_1, hence the edges of P; j_; do not
cross with those of Pji1,. Further, edge (vj_1,v;) is
external to both CH(U;) and CH ({p1,...,p;—1}), and
edge (vj,vj4+1) is on the border of CH(Uj) and external
to CH({pl;“-apj—l})- U

5 Open Problems

The main open problems related to the topic of this
paper remain the ones of characterizing the families of
directed graphs that admit an upward straight-line em-
bedding into every point set in general position and into
every point set in convex position. We believe that de-
termining whether every directed path admits an up-
ward straight-line embedding into every point set in
general position is a problem of its own interest.
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